The European Physical Journal D

, Volume 54, Issue 2, pp 445–449 | Cite as

Influence of the surface conditions on rf plasma characteristics

  • M. Radmilović-RadjenovićEmail author
  • Z. Lj. Petrović
Topical issue: 23rd Symposium on Plasma Physics and Technology


The secondary electron emission is a surface dependent phenomenon, more influenced by surface preparation than by the material itself. The present paper deals with the effect of the electrode surface conditions: clean (atomically clean) and contaminated electrodes (standard conditions even after mechanical and chemicals cleaning) on the characteristics of an asymmetric discharge by PIC/MCC simulations. In the arrangement with one clean and one contaminated electrode the discharge characteristics strongly depend upon which electrode is powered. The obtained PIC/MCC simulation results indicate that contamination of electrodes and variations of the secondary electron emission coefficients can lead to more or less significant changes in properties of rf plasmas.


79.20.Rf Atomic, molecular, and ion beam impact and interactions with surfaces 79.20.Ap Theory of impact phenomena; numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, J. Appl. Phys. 69, 3455 (1991) Google Scholar
  2. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasmas Discharges and Material Processing (Wiley, New York, 1994) Google Scholar
  3. T. Makabe, Z.Lj. Petrović, Advances in Low Temperature RF Plasmas (Elsevier, New York, 2002) Google Scholar
  4. T. Makabe, Z.Lj. Petrović, Plasma Electronics: Applications in Microelectronic Device Fabrication (Taylor & Francis, 2006) Google Scholar
  5. J.P. Molnar, Phys. Rev. 83, 940 (1951) Google Scholar
  6. P.H. Mahadevan, J.K. Layton, D.B. Medvedev, Phys. Rev. 129, 79 (1963) Google Scholar
  7. P.H. Mahadevan, G.D. Magnuson, J.K. Layton, C.E. Carlston, Phys. Rev. 140, A1407 (1965) Google Scholar
  8. G. Holmen, B. Svensson, J. Schou, P. Sigmund, Phys. Rev. B 20, 2247 (1979) Google Scholar
  9. A. Itoh, T. Majima, F. Obata, Y. Hamamoto, A. Yogo, Nucl. Instrum. Meth. B 192, 626 (2002) Google Scholar
  10. A. Bogaerts, R. Gijbels, Plasma Sources Sci. Technol. 11, 27 (2002) Google Scholar
  11. S. Kakuta, F. Tochikubo, Z.Lj. Petrović, T. Makabe, J. Appl. Phys. 74, 4923 (1993) Google Scholar
  12. R. Krimke, H.M. Urbassek, J. Phys. D 29, 378 (1996) Google Scholar
  13. D. Marić, K. Kutasi, G. Malović, Z. Donk, Z.Lj. Petrović, Eur. Phys. J. D 21, 73 (2002) Google Scholar
  14. L. Jolivet, J.F. Roussel, IEEE Trans. Plasma Sci. 30, 318 (2001) Google Scholar
  15. S.F. Biagi, D. Duxbury, E. Gabathuler, Nucl. Instrum. Meth. A 419, 438 (1998) Google Scholar
  16. A. DiMauro, E. Nappi, F. Posa, A. Breskin, A. Ozulutskov, R. Chechik, S.F. Biagi, G. Paic, F. Piuz, Nucl. Instrum. Meth. A 371, 137 (1996) Google Scholar
  17. V.Lj. Marković, S.R. Gocić, S.N. Stamenković, Z.Lj. Petrović, M. Radmilović, Eur. Phys. J. Appl. Phys. 4, 171 (2001) Google Scholar
  18. D. Mariotti, J.A. McLaughlin, P. Maguire, Plasma Sources Sci. Technol. 13, 207 (2004) Google Scholar
  19. M. Radmilović-Radjenović, J.K. Lee, Phys. Plasmas 15, (2005) Google Scholar
  20. C. Punset, J.P. Boeuf, L.C. Pitchford, J. Appl. Phys. 83, 1884 (1998) Google Scholar
  21. V.P. Nagorny, P.J. Drallos, W. Williamson, Jr, J. Appl. Phys. 77, 3645 (1995) Google Scholar
  22. S.S. Yang, S.M. Lee, F. Iza, J.K. Lee, J. Phys. D: Appl. Phys. 39, 2775 (2006) Google Scholar
  23. T.B. Frooninckx, J.J. Sojka, J. Geophys. Res. 97, 2985 (1992) Google Scholar
  24. M. Radmilović-Radjenović, J.K. Lee, F. Iza, G.Y. Park, J. Phys. D 38, 950 (2005) Google Scholar
  25. M. Radmilović-Radjenović, B. Radjenović, Plasma Sources Sci. Technol. 16, 337 (2007) Google Scholar
  26. M. Radmilović-Radjenović, B. Radjenović, Contrib. Plasma Phys. 47, 165 (2007) Google Scholar
  27. A. Qayyum, I. Mehmood, W. Ahmad, The Nucleus 41, 1 (2004) Google Scholar
  28. E.V. Barnat, G.A. Hebener, J. Appl. Phys. 98, 013305 (2005) Google Scholar
  29. A.V. Phelps, Z.Lj. Petrović, Plasma Sources Sci. Technol. 8, R21 (1999) Google Scholar
  30. C.K. Birdsall, IEEE Trans. Plasma Sci. 19, 65 (11991) Google Scholar
  31. J.P. Verboncoeur, M.V. Alves, V. Vahedi, C.K. Birdsall, J. Comput. Phys. 104, 321 (1993) Google Scholar
  32. V. Vahedi, M. Surendra, Comput. Phys. Commun. 87, 179 (1995) Google Scholar
  33. N.Yu Babaeva, J.K. Lee, J.W. Shon, J. Phys. D: Appl. Phys. 38, 287 (2005) Google Scholar
  34. I.V. Schweigert, V.A. Schweigert, Plasma Sources Sci. Technol. 13, 315 (2004) Google Scholar
  35. H.C. Kim, O. Manuilenko, J.K. Lee, Jpn J. Appl. Phys. 44, 1957 (2005) Google Scholar
  36. E.J. Sternglass, Phys. Rev. 108, 1 (1957) Google Scholar
  37. J.P. Boeuf, Phys. Rev. A 36, 2782 (1987) Google Scholar
  38. M. Soji, M. Sato, J. Phys. D: Appl. Phys. 32, 1640 (1999) Google Scholar
  39. H.B. Smith et al., Phys. Plasmas 10, 875 (2003) Google Scholar
  40. A.V. Phelps, L.C. Pitchford, C. Pedoussat, Z. Donko, Plasma. Sources Sci. Technol. 8, B1 (1999) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of PhysicsBelgradeSerbia

Personalised recommendations