Advertisement

The European Physical Journal D

, Volume 54, Issue 2, pp 219–224 | Cite as

Dust particles in collisionless plasma sheath with arbitrary electron energy distribution function

  • J. Blažek
  • P. BartošEmail author
  • R. Basner
  • H. Kersten
  • P. Špatenka
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

Dust particles often appear in industrial plasmas as undesirable product of the plasma-wall interactions. Large particles of several micrometers in diameter are concentrated in a thin layer (the sheath) above the lower electrode of the rf driven parallel plate device, where the electric force is strong enough to compensate particle’s gravity. Experimental and theoretical uncertainties are significantly increased in the plasma sheath. Common models of dust charging in the plasma sheath suppose the Maxwellian electron energy distribution function (EEDF) in conjunction with a flux of cold ions satisfying classical Bohm criterion at the sheath edge. In this paper we generalize this model to arbitrary EEDF with adapted Bohm criterion. We limit our considerations to collisionless or slightly collisional plasma, where the EEDF inside the sheath is expressed through the EEDF in the plasma bulk. Derived theoretical formulas are incorporated into numerical model, describing collisionless radio frequency (rf) plasma sheath together with the electrical charge, various kinds of forces, balancing radius and oscillation frequency of particles.

PACS

52.40.Kh Plasma sheaths 52.27.Lw Dusty or complex plasmas; plasma crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Nitter, Plasma Sources Sci. Technol. 5, 93 (1996) Google Scholar
  2. B.M. Annaratone, M. Glier, T. Stuffler, M. Raif, H.M. Thomas, G.E. Morfill, New J. Phys. 5, 92 (2003) Google Scholar
  3. R. Basner, J. Blažek, H. Kersten, G. Thieme, in XXVIII International Conference on Phenomena in Ionized Gases (ICPIG), Prague, (2007), p. 1649 Google Scholar
  4. E.B. Tomme, D.A. Law, B.M. Annaratone, J.E. Allen, Phys. Rev. Lett. 85, 2518 (2000) Google Scholar
  5. K.-U. Riemann, J. Appl. Phys. 65, 999 (1989) Google Scholar
  6. K. Köhler, J.W. Coburn, D.E. Horne, E. Kay, J. Appl. Phys. 57, 59 (1985) Google Scholar
  7. D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields, edited by A. Guthry, R.K. Wakerling (MacGraw-Hill, New York, 1949), p. 77 Google Scholar
  8. J. Blažek, R. Basner, H. Kersten, in 14th Annual Conference Proceedings, Technical Computing, Prague (2006), p. 20 Google Scholar
  9. H. Kersten, H. Deutsch, G.M.W. Kroesen, Int. J. Mass Spectrom. 233, 51 (2004) Google Scholar
  10. A.V. Ivlev, S.K. Zhdanov, S.A. Krapak, G.E. Morfill, Plasma Phys. Contr. Fusion 46, B267 (2004) Google Scholar
  11. J.E. Allen, Phys. Scr. 45, 497 (1992) Google Scholar
  12. X. Chen, IEEE Trans. Plasma Sci. 25, 1117 (1997) Google Scholar
  13. en.wikipedia.org/wiki/Incomplete_gamma_function Google Scholar
  14. C. Zafiu, A. Melzer, A. Piel, Phys. Plasmas 9, 4794 (2002) Google Scholar
  15. P.S. Epstein, Phys. Rev. 23, 710 (1924) Google Scholar
  16. H.M. Thomas, G.E. Morfill, Nature 379, 806 (1996) Google Scholar
  17. V. Nosenko, J. Goree, Z.W. Ma, Phys. Rev. Lett. 88, 135001 (2002) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. Blažek
    • 1
  • P. Bartoš
    • 1
    Email author
  • R. Basner
    • 2
  • H. Kersten
    • 2
  • P. Špatenka
    • 1
  1. 1.University of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Institute for Nonthermal PhysicsGreifswaldGermany

Personalised recommendations