Advertisement

The European Physical Journal D

, Volume 54, Issue 2, pp 511–518 | Cite as

Electromagnetic field distributions in waveguide-based axial-type microwave plasma source

  • H. NowakowskaEmail author
  • M. Jasiński
  • J. Mizeraczyk
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

We present results from simulations of 2D distributions of the electromagnetic field inside a waveguide-based axial-type microwave plasma source (MPS) used for hydrogen production via methane reforming. The studies are aimed at optimization of discharge processes and hydrogen production. We derive equations for determining electromagnetic field distributions and next determine the electromagnetic field distributions for two cases – without and with plasma inside the MPS. For the first case, we examine the influence of the length of the inner conductor of the coaxial line on electromagnetic field distributions. We have obtained standing wave patterns along the coaxial line and found resonances for certain positions of the coaxial line inner conductor. For the case with plasma inside the MPS, we perform calculations assuming that distributions of plasma parameters are known. Simulations are done for several values of maximum electron density. We have found that for values of electron density greater than \(3\times 10^{18}~{\rm m}^{-3}\) strong skin effect in the plasma is observed. Consequently, plasma may be treated as an extension of the inner conductor of the coaxial line. We have used FlexPDE software for the calculations.

PACS

52.50.Dg Plasma sources 52.80.Pi High-frequency and RF discharges 52.75.Hn Plasma torches 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Moisan, G. Sauve, Z. Zakrzewski, J. Hubert, Plasma Sources Sci. Technol. 3, 584 (1994) Google Scholar
  2. K.M. Green, M.C. Borrás, P.P. Woskov, G.J. Flores, K. Hadidi, P. Thomas, IEEE Trans. Plasma Sci. 29, 399 (2001) Google Scholar
  3. H.S. Uhm, Y.C. Hong, D.H. Shin, Plasma Sources Sci. Technol. 15, S26 (2006) Google Scholar
  4. V. Stranák, M. Tichý, J. Blazek, Z. Navrátil, P. Slavícek, P. Adámek, P. Spatenka, AIP Conference Proceedings 812, 72 (2006) Google Scholar
  5. S.C. Cho, Y.C. Hong, H.S. Uhm, Jpn J. Appl. Phys. 47, 297 (2008) Google Scholar
  6. M. Jasiński, J. Mizeraczyk, Z. Zakrzewski, T. Ohkubo, J.S. Chang, J. Phys. D: Appl. Phys. 35, 2274 (2002) Google Scholar
  7. Y. Kabouzi, M. Moisan, J.C. Rostaing, C. Trassy, D. Keroack, Z. Zakrzewski, J. Appl. Phys. 93, 9483 (2003) Google Scholar
  8. Y.C. Hong, H.S. Uhm, H.S. Kim, M.J. Kim, S.H. Han, S.C. Ko, S.K. Park, IEEE Trans. Plasma Sci. 33, 958 (2005) Google Scholar
  9. H. Sekiguchi, Y. Mori, Thin Solid Films 435, 44 (2003) Google Scholar
  10. A. Yanguas-Gil, J.L. Hueso, J. Cotrino, A. Caballero, A.R. González-Elipe, Appl. Phys. Lett. 85, 4004 (2004) Google Scholar
  11. D.H. Shin, Y.C. Hong, H.S. Uhm, The 5th China Korea Joint Workshop on Clean Energy Technology (Oingado, China, 2005) Google Scholar
  12. G. Petitpas, J.-D. Rollier, A. Darmon, J. Gonzalez-Aguilar, R. Metkemeijer, L. Fulcheri, Int. J. Hydrogen Energy 32, 2848 (2007) Google Scholar
  13. W. McDowall, M. Eames, Energy Pol. 34, 1236 (2006) Google Scholar
  14. European Commission: EUR 20719 EN – Hydrogen Energy and Fuel Cells – A vision of our future Luxembourg: Office for Official Publications of the European Communities, 2003 Google Scholar
  15. M. Jasiński, M. Dors, J. Mizeraczyk, J. Power Sources 181, 41 (2008) Google Scholar
  16. M. Jasiński, M. Dors, J. Mizeraczyk, Proceedings of the 6th International Symposium on Non-Thermal Plasma Technology (Wan-Li, Taipei, Taiwan, 2008) Google Scholar
  17. A.M. Bilgic, C. Prokisch, J.A.C. Broekaert, E. Voges, Spectrochim. Acta B 53, 773 (1998) Google Scholar
  18. A.M. Bilgic, K. Garloff, E Voges, Plasma Sources Sci. Technol. 8, 325 (1999) Google Scholar
  19. R. Álvarez, A. Rodero, M.C. Quintero, L.L. Alves, in: Microwave Discharges: Fundamentals and Applications Proceedings of VI International Workshop, edited by Yu.A. Lebedev (Yanus-K, Moscow, 2006), p. 79 Google Scholar
  20. R. Álvarez, L.L. Alves, J. Appl. Phys. 101, 103303 (2007) Google Scholar
  21. M. Leins, K.-M. Baumgärtner, M. Walker, A. Schulz, U. Schumacher, U. Stroth, Plasma Process. Polym. 4, S493 (2007) Google Scholar
  22. FlexPDE5, http://www.pdesolutions.com Google Scholar
  23. Y. Bae, W.C. Lee, K.B. Ko, Y.H. Lee, W. Namkung, M.H. Cho, J. Korean Phys. Soc. 48, 67 (2006) Google Scholar
  24. Y.S. Bae, E.M. Choi, W.S. Jung, Y.H. Lee, M.H. Cho, W. Namkung, H.S. Uhm (2002) http://psl.postech.ac.kr/publication/ dom_poster_phy/kps_2002_spring_ysbae_torch.pdf Google Scholar
  25. S. Miyake, S. Takeuchi, Y. Arata, Jpn J. Appl. Phys. 13, 296 (1974) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of SciencesGdańskPoland
  2. 2.Dept. of Marine Electronics, Gdynia Maritime UniversityGdyniaPoland

Personalised recommendations