The European Physical Journal D

, Volume 54, Issue 2, pp 287–291 | Cite as

The double M-effect induced by noble gases activated with negative ions

  • R. VladoiuEmail author
  • M. Contulov
  • A. Mandes
  • G. Musa
Topical issue: 23rd Symposium on Plasma Physics and Technology


The M-effect (monochromatization-effect) is a powerful tool which can give high intensity monochromatic spectra with a certain wavelength depending on the type of used gas mixtures to generate plasma state. The effect consists in the emission of a single spectral line of plasmas ignited in certain gas mixtures. The main condition to obtain the M effect is the presence of an electropositive and an electronegative gas mixture. For example, in the case of Ne+H2 monochrome radiation was obtained, the wavelength of Ne being 585.3 nm (1s2–2p5). In this paper we prove the general character of this effect, i.e. if the optical emission spectra reduced to nearly one line can be observed also in other gas mixture discharges, for example in the case of one electronegative gas and two electropositive gases. Different other mixtures, as Xe+Ne+H2 and Xe+Ar+H2 have been studied. In all these cases, the M-effect appeared without doubt.


52.20.Hv Atomic, molecular, ion, and heavy-particle collisions 52.27.Cm Multicomponent and negative-ion plasmas 52.70.Kz Optical (ultraviolet, visible, infrared) measurements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. Musa, A. Popescu, A. Baltog, I. Mustata, J. Phys. D 18, 2119 (1985) Google Scholar
  2. G. Musa, A. Popescu, A. Baltog, I. Mustata, N. Niculescu, C.P. Lungu, Revue Roumaine de Physique 26, 125 (1981) Google Scholar
  3. G. Musa, A. Baltog, G. Bajeu, C.P. Lungu, R. Raiciu, I. Borcoman, A. Ricard, Eur. Phys. J. Appl. Phys. 4, 165 (1998) Google Scholar
  4. G. Musa, A. Popescu, A. Baltog, C.P. Lungu, Romanian Reports in Physics 45, 287 (1993) Google Scholar
  5. G. Musa, C.P. Lungu, A. Popescu, A. Baltog, IEICE Transaction on Electronics E 75-C, Japan, 241 (1992) Google Scholar
  6. A. Baltog, R. Raiciu, G. Musa, Contrib. Plasma Phys. 40, 537 (2000) Google Scholar
  7. G. Musa, L.C. Ciobotaru, A. Baltog, P. Chiru, Eur. Phys. J. Appl. Phys. 28, 339 (2004) Google Scholar
  8. G. Musa, A. Baltog, Contrib. Plasma Phys. 43, 216 (2003) Google Scholar
  9. C. Surdu-Bob, P. Chiru, O. Branza, G. Musa, J. Optoelectron. Adv. Mat. 7, 2391 (2005) Google Scholar
  10. G. Musa, R. Vladoiu, M. Contulov, V. Dinca, Romanian Reports in Physics 60, 627 (2008) Google Scholar
  11. L. Landau, Phys. Z. Sowjet. 2, 46 (1932) Google Scholar
  12. C. Zener, Proc. R. Soc. A 137, 696 (1932) Google Scholar
  13. V. Mihailov, V. Ghenceva, R. Djulgerova, J. Phys. D 34, 2185 (2001) Google Scholar
  14. M.A. Lieberman, A.J. Lichtenberg, Principle of plasma discharges and Material Processing (John Willey & Sons, NY, 1995) Google Scholar
  15. Byoung-Kulk Min, S.-H. Lee, Hun-Gun Park, J. Vac. Sci. Technol. 18, 349 (2000) Google Scholar
  16. N.P. Curran, M.B. Hopkins, D. Vender, B.W. James, Plasma Sources Sci. Technol. 9, 169 (2000) Google Scholar
  17. G. Musa, C. Surdu-Bob, R. Vladoiu, J. Optoelectron. Adv. Mat. 9, 2653 (2007) Google Scholar
  18. A. Bogaerts, J. Anal. At. Spectrom. 14, 1375 (1999) Google Scholar
  19. A. Qayyum, S. Zeb, M.A. Naveed, S.A. Ghauri, M. Zakaullah, J. Appl. Phys. 98, 103303 (2005) Google Scholar
  20. S.D. Popa, J. Phys. D 29, 416 (1996) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of PhysicsOvidius UniversityConstantaRomania

Personalised recommendations