The European Physical Journal D

, Volume 54, Issue 2, pp 299–304 | Cite as

Secondary electron emission from highly charged carbon grains

  • M. Beránek
  • I. Richterová
  • Z. Němeček
  • J. PavlůEmail author
  • J. Šafránková
Topical issue: 23rd Symposium on Plasma Physics and Technology


Surfaces in contact with a plasma can influence its characteristics and, on the other hand, the impact of plasma particles can change surface properties of materials immersed in a plasma. Carbon is often present in plasma systems either as a building material or a product of technological processes, thus its behavior is an important factor of these applications. The paper deals with investigations of secondary emission of 1–6 μm spherical grains from amorphous carbon under the electric field of the order of 108 V/m. We have found that the secondary emission yield increases with the electric field at the sample surface nearly linearly and does not depend on the grain diameter. Long-lasting (hours) electron irradiation of the sample surface leads to a significant decrease of the yield that was attributed to the removal of an absorbed layer from the grain surface. This conclusion is supported by the fact that a similar effect was achieved after several minutes of simultaneous electron and ion treatments.


79.20.Hx Electron impact: secondary emission 96.50.Dj Interplanetary dust and gas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C.K. Goertz, Rev. Geophys. 27, 271 (1989) Google Scholar
  2. B. Walch, M. Horányi, S. Robertson, Phys. Rev. Lett. 75, 838 (1995) Google Scholar
  3. Z. Němeček, J. Pavlů, J. Šafránková, I. Richterová, I. Čermák, in Dusty Plasmas in the New Millennium, AIP Conference Proceedings, edited by R. Bharuthram, M. Hellberg, P. Shukla, F. Verheest (American Institute of Physics, Melville, New York, 2002), Vol. 649, pp. 378–381 Google Scholar
  4. B. Draine, E. Salpeter, Astrophys. J. 231, 77 (1979) Google Scholar
  5. E. Sternglass, Theory of secondary electron emission under electron bombardment, Scientific Paper 6-94410-2-P9, Westinghouse Research Laboratories, Pittsburgh (1957), p. 35 Google Scholar
  6. E.J. Sternglass, Phys. Rev. 108, 1 (1957) Google Scholar
  7. M. Rosenberg, D.A. Mendis, D.P. Sheehan, IEEE Trans. Plasma Sci. 27, 239 (1999) Google Scholar
  8. M. Horányi, S. Robertson, B. Walch, Geophys. Res. Lett. 22, 2079 (1995) Google Scholar
  9. V. Chow, D. Mendis, M. Rosenberg, IEEE Trans. Plasma Sci. 22, 179 (1994) Google Scholar
  10. S. Clerc, J. Dennison, R. Hoffmann, J. Abbott, IEEE Trans. Plasma Sci. 34, 2219 (2006) Google Scholar
  11. N. Zameroski, P. Kumar, C. Watts, T. Svimonishvili, M. Gilmore, E. Schamiloglu, J. Gaudet, IEEE Trans. Plasma Sci. 34, 642 (2006) Google Scholar
  12. K.I. Grais, A. Bastawros, J. Appl. Phys. 53, 5239 (1982) Google Scholar
  13. J. Cazaux, J. Appl. Phys. 85, 1137 (1999) Google Scholar
  14. A. Melchinger, S. Hofmann, J. Appl. Phys. 78, 6224 (1995) Google Scholar
  15. A. Sim, J. Dennison, C. Thomson, Bull. Amer. Phys. Soc. 50, 1185 (2005) Google Scholar
  16. E. Rau, Appl. Surf. Sci. 254, 2110 (2008) Google Scholar
  17. E. Rau, S. Fakhfakh, M. Andrianov, E. Evstafeva, O. Jbara, S. Rondot, D. Mouze, Nucl. Instrum. Meth. B 266, 719 (2008) Google Scholar
  18. I. Richterová, J. Pavlů, Z. Němeček, J. Šafránková, Phys. Rev. B 74, 235430 (2006) Google Scholar
  19. V. Baglin, J. Bojko, O. Gröbner, B. Henrist, N. Hilleret, C. Scheuerlein, M. Taborelli, in EPAC 2000 Contributions to the Proceedings, edited by M. Regler (Joint Accelerator Conferences Website (JACoW), 2000), EPAC, pp. 217–221 Google Scholar
  20. F. Le Pimpec, R. Kirby, F. King, M. Pivi, J. Vac. Sci. Technol. A 23, 1610 (2005) Google Scholar
  21. J. Dennison, A. Sim, C. Thomson, IEEE Trans. Plasma Sci. 34, 2204 (2006) Google Scholar
  22. S. Fakhfakh, O. Jbara, S. Rondot, E. Rau, Z. Fakhfakh, J. Phys. D: Appl. Phys. 41, 105402 (2008) Google Scholar
  23. I. Čermák, E. Grün, J. Švestka, Adv. Space Res. 15, 59 (1995) Google Scholar
  24. P. Žilavý, Z. Sternovský, I. Čermák, Z. Němeček, J. Šafránková, Vacuum 50, 139 (1998) Google Scholar
  25. J. Pavlů, A. Velyhan, I. Richterová, Z. Němeček, J. Šafránková, I. Čermák, P. Žilavý, IEEE Trans. Plasma Sci. 32, 704 (2004) Google Scholar
  26. J. Pavlu, I. Richterova, Z. Nemecek, J. Safrankova, I. Cermak, Faraday Discuss. 137, 139 (2008) Google Scholar
  27. J. Pavlů, I. Richterová, J. Šafránková, Z. Němeček, Adv. Space Res. 38, 2558 (2006) Google Scholar
  28. I. Richterová, D. Fujita, J. Pavlů, Z. Němeček, J. Šafránková, in XXVIII International Conference on Phenomena in Ionized Gases, edited by J. Schmidt, M. Šimek, S. Pekárek, V. Prukner (Institute of Plasma Physics AS CR, v.v.i., Prague, 2007), pp. 2263–2266 Google Scholar
  29. S. P. Somani, P.R. Somani, M. Tanemura, S. Lau, M. Umeno, Curr. Appl. Phys. 9, 144 (2008) Google Scholar
  30. A. Shih, J. Yater, P. Pehrsson, J. Butler, C. Hor, R. Abrams, J. Appl. Phys. 82, 1860 (1997) Google Scholar
  31. M. Jeřáb, I. Richterová, J. Pavlů, J. Šafránková, Z. Němeček, IEEE Trans. Plasma Sci. 35, 292 (2007) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Beránek
    • 1
  • I. Richterová
    • 1
  • Z. Němeček
    • 1
  • J. Pavlů
    • 1
    Email author
  • J. Šafránková
    • 1
  1. 1.Charles University, Faculty of Mathematics and PhysicsPragueCzech Republic

Personalised recommendations