The European Physical Journal D

, Volume 54, Issue 2, pp 179–183 | Cite as

Application of atmospheric pressure microwave plasma source for production of hydrogen via methane reforming

Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

In this paper, results of hydrogen production via methane pyrolysis in the atmospheric pressure microwave plasma with CH4 swirl are presented. A waveguide-based nozzleless cylinder-type microwave plasma source (MPS) was used to convert methane into hydrogen. The plasma generation was stabilized by a CH4 swirl having a flow rate of 87.5 L min-1. The absorbed microwave power was 1.5–5 kW. The hydrogen production rate and the corresponding energy efficiency were 866 g (H2) h-1 and 577 g (H2) kWh-1 of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).

PACS

52.50.Dg Plasma sources 52.50.Sw Plasma heating by microwaves; ECR, LH, collisional heating 82.30.Lp Decomposition reactions 84.40.Dc Microwave circuits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Petitpas, J.-D. Rollier, A. Darmon, J. Gonzalez-Aguilar, R. Metkemeijer, L. Fulcheri, Int. J. Hydrogen Energy 32, 2848 (2007) Google Scholar
  2. L. Bromberg, D.R. Cohn, A. Rabinovich, N. Alexeev, A. Samokhin, R. Ramprasad, S. Tamhankar, Int. J. Hydrogen Energy 25, 1157 (2000) Google Scholar
  3. L. Bromberg, D.R. Cohn, A. Rabinovich, N. Alexeev, Int. J. Hydrogen Energy 24, 1131 (1999) Google Scholar
  4. J.M. Cormie, I. Rusu, J. Phys. D: Appl. Phys. 34, 2798 (2001) Google Scholar
  5. N. Reveau, M. Nikravech, O. Martinie, P. Lefaucheux, J.M. Cormier, in Proc. HAKONE VII, Greifswald, Germany, 2000, pp. 252–256 Google Scholar
  6. A. Czernichowski, M. Czernichowski, P. Czernichowski, in Proc. 16th Int. Symp. on Plasma Chemistry, Taormina, Italy, 2003, p. 578 Google Scholar
  7. H. Sekiguchi, Y. Mori, Thin Solid Films 435, 44 (2003) Google Scholar
  8. H. Sekiguchi, S. Nakanishi, K. Fukuda, H. Inagaki, in Proc. 16th Int. Symp. on Plasma Chemistry, Taormina, Italy, 2003, p. 598 Google Scholar
  9. T. Kappes, W. Schiene, T. Hammer, in Proc. 8th Int. Symp. on High Pressure Low Temperature Plasma Chemistry, Puhajarve, Estonia, 2002, pp. 196–200 Google Scholar
  10. H. Kabashima, H. Einaga, S. Futamura, IEEE Trans. Ind. Appl. 39, 340 (2003) Google Scholar
  11. S. Futamura, H. Kabashima, L. Ma, in Proc. 4th Int. Symp. on Non-thermal Plasma Technology for Pollution Control and Sustainable Energy Development, Panama City Beach, Florida, USA, 2004, pp. 211–215 Google Scholar
  12. B. Pietruszka, K. Anklam, M. Heintze, Appl. Catal. A 261, 19 (2004) Google Scholar
  13. M. Heintze, B. Pietruszka, Catal. Today 89, 21 (2004) Google Scholar
  14. B. Pietruszka, K. Anklam, M. Heintze, in 16th Int. Symp. on Plasma Chemistry, Taormina, Italy, 2003, p. 582 Google Scholar
  15. O. Mutaf-Yardimci, A.V. Saveliev, A.A. Fridman, L.A. Kennedy, Int. J. Hydrogen Energy 23, 1109 (1998) Google Scholar
  16. J.S. Chang, Y. Uchida, M. Ara, J.T. Kim, K. Urashima, J.F. Kelly, M. Stanciulescu, R. Burisch, J.P. Charland, in Proc. 4th Int. Symp. on Non-thermal Plasma Technology for Pollution Control and Sustainable Energy Development, Panama City Beach, Florida, USA, 2004, pp. 216–220 Google Scholar
  17. T. Kappes, T. Hammer, in Proc. 4th Int. Symp. on Non-thermal Plasma Technology for Pollution Control and Sustainable Energy Development, Panama City Beach, Florida, USA, 2004, pp. 206–210 Google Scholar
  18. M. Deminsky, V. Jivotov, B. Potapkin, V. Rusanov, Pure Appl. Chem. 74, 413 (2002) Google Scholar
  19. M. Jasiński, M. Dors, J. Mizeraczyk, J. Power Sources 181, 41 (2008) Google Scholar
  20. M. Moisan, G. Sauve, Z. Zakrzewski, J. Hubert, Plasma Sources Sci. Technol. 3, 584 (1994) Google Scholar
  21. M. Moisan, Z. Zakrzewski, J.C. Rostaining, Plasma Sources Sci. Technol. 10, 387 (2001) Google Scholar
  22. M. Jasiński, J. Mizeraczyk, Z. Zakrzewski, Czech. J. Phys. 52, 421 (2002) Google Scholar
  23. M. Jasiński, J. Mizeraczyk, Z. Zakrzewski, T. Ohkubo, J.S. Chang, J. Phys. D: Appl. Phys. 35, 2274 (2002) Google Scholar
  24. M. Jasiński, J. Mizeraczyk, Z. Zakrzewski, J. Adv. Oxid. Technol. 7, 51 (2004) Google Scholar
  25. J. Mizeraczyk, M. Jasiński, Z. Zakrzewski, Plasma Phys. Contr. Fusion 47, 589 (2005) Google Scholar
  26. K.M. Green, M.C. Borras, P.P. Woskow, G.J. Flores, K. Hadidi, P. Thomas, IEEE Trans. Plasma Sci. 29, 399 (2001) Google Scholar
  27. H.S. Uhm, Y.C. Hong, D.H. Shin, Plasma Sources Sci. Technol. 15, S26 (2006) Google Scholar
  28. P.L. Spath, M.K. Mann, National Renewable Energy Laboratory Technical, Report, 2001, NREL/TP-570-27637 Google Scholar
  29. http://www.loim.vrn.ru/ index.php?m=63&page=58& nm=74&p=.2.3.56.64.70.71.72.73.74 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of SciencesGdañskPoland
  2. 2.Dept. of Marine Electronics, Gdynia Maritime UniversityGdyniaPoland

Personalised recommendations