Advertisement

The European Physical Journal D

, Volume 54, Issue 2, pp 159–164 | Cite as

Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates

  • S. ZaniniEmail author
  • M. Orlandi
  • C. Colombo
  • E. Grimoldi
  • C. Riccardi
Topical issue: 23rd Symposium on Plasma Physics and Technology

Abstract

A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.

PACS

52.80.Pi High-frequency and RF discharges 82.35.Gh Polymers on surfaces; adhesion 52.77.Dq Plasma-based ion implantation and deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.L. Elbert, J.A. Hubbell, Annu. Rev. Mater. Sci. 26, 365 (1996) Google Scholar
  2. N.P. Desai, J.A. Hubbell, J. Biomed. Mater. Res. 25, 829 (1991) Google Scholar
  3. K. Bergstrom, K. Holmberg, A. Safrani, A.S. Hoffman, M.J. Edgell, A. Kozlowski, B. Hovanes, J.M. Harris, J. Biomed. Mater. Res. 26, 779 (1999) Google Scholar
  4. W.R. Gombotz, W. Guanghui, T.A. Horbett, A.S. Hoffman, J. Biomed. Mater. Res. 25, 1547 (1991) Google Scholar
  5. M.S. Sheu, A.S. Hoffman, J. Feijen, J. Adh. Sci. Technol. 6, 995 (1992) Google Scholar
  6. R.J. Green, M.C. Davies, C.J. Roberts, S.J.B. Tendler, J. Biomed. Mater. Res. 42, 165 (1998) Google Scholar
  7. M. Manso-Silvan, A. Valsesia, D. Gilliland, G. Ceccone, F. Rossi, Surf. Interf. Anal. 36, 733 (2004) Google Scholar
  8. S. Zanini, M. Müller, C. Riccardi, M. Orlandi, Plasma Chem. Plasma Process. 27, 446 (2007) Google Scholar
  9. Y.J. Wu, R.B. Timmons, J.S. Jen, F.E. Molock, Colloids Surf. B Biointerf. 18, 235 (2000) Google Scholar
  10. Y.J. Wu, A.J. Griggs, J.S. Jen, S. Monolache, F.S. Denes, R.B. Timmons, Plasmas Polym. 6, 123 (2001) Google Scholar
  11. M. Okubo, M. Tahara, N. Saeki, T. Yamamoto, Thin Solid Films 516, 6592 (2008) Google Scholar
  12. S. Zanini, C. Riccardi, M. Orlandi, C. Colombo, F. Croccolo, Polymer Degrad. Stab. 93, 1158 (2008) Google Scholar
  13. P. Wang, K.L. Tan , E.T. Kang, K.G. Neoh, J. Membr. Sci. 195, 103 (2002) Google Scholar
  14. X.P. Zou, E.T. Kang, K.G. Neoh, Surf. Coat. Technol. 149, 119 (2002) Google Scholar
  15. F. Zhang, E.T. Kang, K.G. Neoh, P. Wang, K.L. Tan, J. Biomed. Mater. Res. Part A 56, 324 (2001) Google Scholar
  16. V. Svorčik, K. Koláŕová, P. Slepička, A. Macková, M. Novotná, V. Hnatowicz, Polymer Degrad. Stab. 91, 1219 (2006) Google Scholar
  17. S. Guruvenket, G.M. Rao, M. Komath, A.M. Raichur, Appl. Surf. Sci. 236, 278 (2004) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • S. Zanini
    • 1
    Email author
  • M. Orlandi
    • 2
  • C. Colombo
    • 2
  • E. Grimoldi
    • 1
  • C. Riccardi
    • 1
  1. 1.Dipartimento di Fisica “G. Occhialini”Universitá degli Studi di Milano-BicoccaMilanoItaly
  2. 2.Dipartimento di Scienza dell’Ambiente e del TerritorioUniversitá degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations