Advertisement

The European Physical Journal D

, Volume 50, Issue 1, pp 107–121 | Cite as

Detecting some three-qubit MUB diagonal entangled states via nonlinear optimal entanglement witnesses

  • M. A. JafarizadehEmail author
  • M. Mahdian
  • A. Heshmati
  • K. Aghayar
Quantum Optics and Quantum Information

Abstract

The three qubits mutually unbiased bases (MUB) diagonal density matrices with maximally entanglement in Greenberger-Horne-Zeilinger (GHZ) basis are studied. These are a natural generalization of Bell-state diagonal density matrices. The linearity of positive partial transpose (PPT) conditions allows one to specify completely PPT states or feasible region (FR) which form a polygon, where the projection of the feasible region to some two dimensional planes has lead to better visualization. To reveal the PPT entangled regions of these density matrices, we manipulate some appropriate optimal non-decomposable linear entanglement witnesses (EWs) as the envelope of family of linear optimal non-decomposable EWs. These nonlinear EWs are nonlinear functional of MUB diagonal states, so that they are nonnegative valued over all separable, but they are negative valued over some PPT entangled MUB diagonal states. Even though, these nonlinear EWs can not separate completely, the PPT entanglement region from separable one, but however in special cases they lead to necessary and sufficient condition for separability. To support the evidence, we study three categories for special choices of parameters in density matrices, and using the nonlinear EWs we can distinguish the region of PPT entangled states and separable states, completely. At the end some numerical simulations are provided to show the practical applicability of these nonlinear EWs in detecting some PPT entangled MUB diagonal states.

PACS

03.67.Mn Entanglement measures, witnesses, and other characterizations 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935); E. Schrödinger, Naturwissenschaften 23, 807 (1935); J.S. Bell, Physics N.Y. 1, 195 (1964)Google Scholar
  2. D. Deutsch, Proc. R. Soc. London, Ser. A 425, 73 (1989); P. Shor, SIAM J. Comput. 26, 1484 (1997)Google Scholar
  3. A. Ekert, Phys. Rev. Lett. 67, 661 (1991)Google Scholar
  4. C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)Google Scholar
  5. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, A. Zeilinger, Nature 390, 575 (1997); D. Boschi, S. Brance, F. de Martini, L. Hardy, S. Popescu, Phys. Rev. Lett. 80, 1121 (1998)Google Scholar
  6. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)Google Scholar
  7. K. Mattle, H. Weinfurter, P. Kwiat, A. Zeilinger, Phys. Rev. Lett. 76, 4656 (1996)Google Scholar
  8. R. Cleve, H. Buhrman, Phys. Rev. A 56, 1201 (1997)Google Scholar
  9. J.L. Romero, G. Björk, A.B. Klimov, L.L. Sánchez-Soto, Phys. Rev. A 72, 062310 (2005)Google Scholar
  10. M.A. Jafarizadeh, G. Najarbashi, H. Habibian, Phys. Rev. A 75, 052326 (2007)Google Scholar
  11. M.A. Jafarizadeh, M. Rezaee, S.K.A. Seyed Yagoobi, Phys. Rev. A 72, 062106 (2005)Google Scholar
  12. M.A. Jafarizadeh, G. Najarbashi, Y. Akbari, H. Habibian, Eur. Phys. J. D 47, 233 (2008)Google Scholar
  13. M.A. Jafarizadeh, R. Sufiani, Phys. Rev. A 77, 012105 (2008)Google Scholar
  14. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, eprint arXiv:quant-ph/0702225 Google Scholar
  15. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996)Google Scholar
  16. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)Google Scholar
  17. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)Google Scholar
  18. S.L. Woronowicz, Rep. Math. Phys. 10, 165 (1976)Google Scholar
  19. P. Horodecki, Phys. Lett. A 232, 333 (1997)Google Scholar
  20. B.M. Terhal, Phys. Lett. A 271, 319 (2000)Google Scholar
  21. A. Jamiolkowski, Rep. Math. Phys. 3, 275 (1972)Google Scholar
  22. T. Moroder, O. Gühne, N. Lütkenhaus, Phys. Rev. A 78, 032326 (2008)Google Scholar
  23. M.A. Jafarizadeh et al., Phys. Rev. A 78, 032313 (2008)Google Scholar
  24. C. Archer, J. Math. Phys. 46, 022106 (2005).Google Scholar
  25. M. Planat, H.C. Rosu, Eur. Phys. J. D 36, 133 (2005)Google Scholar
  26. T.C. Bschorr, D.G. Fischer, M. Freyberger, Phys. Lett. A 292, 15 (2001)Google Scholar
  27. L.X. Cen, N.J. Wu, F.H. Yang, J.H. An, Phys. Rev. A 65, 052318 (2002)Google Scholar
  28. J. Lawrence, C. Brukner, A. Zeilinger, Phys. Rev. A 65, 032320 (2002)Google Scholar
  29. A. Acín, D. Bruß, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 87, (2001)Google Scholar
  30. M.A. Jafarizadeh, M. Rezaee, S. Ahadpour, Phys. Rev. A 74, 042335 (2006)Google Scholar
  31. W. Rudin, Functional Analysis (McGraw-Hill, Singapore, 1991)Google Scholar
  32. A.C. Doherty, P.A. Parrilo, F.M. Spedalieri, Phys. Rev. A 69, 022308 (2004)Google Scholar
  33. M. Lewenstein, D. Bruß, J.I. Cirac, B. Kraus, M. Kus, J. Samsonowicz, A. Sanpera, R. Tarrach, J. Mod. Opt. 47, 2841 (2000)Google Scholar
  34. E.W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd edn. (CRC Press, 2003)Google Scholar
  35. I. Bengtsson, AIP Conf. Proc. 750, 63 (2005)Google Scholar
  36. I. Bengtsson, W. Bruzda, A. Ericsson, J.A. Larsson, W. Tadej, K. Zyczkowski, J. Math. Phys. 48, 052106 (2007)Google Scholar
  37. M. Grassl, in Proceedings ERATO Conference on Quantum Information Science 2004 (EQIS 2004), Tokyo (2004), pp. 60-61, e-print arXiv:quant-ph/0406175 Google Scholar
  38. H.C. Rosu, M. Planat, M. Saniga, AIP Conf. Proc. 734, 315 (2004)Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • M. A. Jafarizadeh
    • 1
    • 2
    • 3
    Email author
  • M. Mahdian
    • 1
  • A. Heshmati
    • 1
  • K. Aghayar
    • 1
  1. 1.Department of Theoretical Physics and AstrophysicsUniversity of TabrizTabrizIran
  2. 2.Institute for Studies in Theoretical Physics and MathematicsTehranIran
  3. 3.Research Institute for Fundamental SciencesTabrizIran

Personalised recommendations