Advertisement

The European Physical Journal D

, Volume 50, Issue 1, pp 9–12 | Cite as

The Z-1 expansions of the total non-relativistic energies for three- and four-electron systems

  • A. M. Frolov
  • D. M. WardlawEmail author
Atomic Physics

Abstract

Analytical formulas are derived for the Z-1 (Q-1) expansions of the total energies in the two-, three- and four-electron atomic systems. The coefficients in these formulas are determined from the results of accurate and highly accurate computations with correlated wave functions. The accuracy of our formulas is sufficient to evaluate the total ground state energy of an arbitrary non-relativistic ion with two, three and four electrons.

PACS

31.10.-p Calculations and mathematical techniques in atomic and molecular physics 31.15.ac High-precision calculations for few-electron (or few-body) atomic systems 31.15.ae Electronic structure and bonding characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.B. Migdal, V. Krainov, Approximation Methods in Quantum Mechanics (W.A. Benjamin Inc., New York, 1969)Google Scholar
  2. T. Kato, Perturbation Theory for Linear Operators (Spinger, New York, 1966)Google Scholar
  3. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957)Google Scholar
  4. Y. Accad, C.L. Pekeris, B. Shiff, Phys. Rev. A 4, 1479 (1975)Google Scholar
  5. G.W.F. Drake, High Precision Calculations for Helium, Atomic, Molecular and Optical Physics, 2nd edn. (Springer Verlag, Berlin, 2004), p. 199Google Scholar
  6. R.J. Drachman, Phys. Rev. A 47, 694 (1993)Google Scholar
  7. A.M. Frolov, J. Chem. Phys. 126, 104302 (2007); A.M. Frolov, J. Chem. Phys. 124, 224323 (2006); A.M. Frolov, J. Phys. B 38, 3233 (2005)Google Scholar
  8. N.N. Kolesnikov, V.I. Tarasov, Yad. Fiz. 35, 609 (1982); N.N. Kolesnikov, V.I. Tarasov, Sov. J. Nucl. Phys. 35, 354 (1982)Google Scholar
  9. A.M. Frolov, D.M. Wardlaw, Phys. Rev. A, in pressGoogle Scholar
  10. F.W. King, Phys. Rev. A 40, 1735 (1989)Google Scholar
  11. M. Puchalski, K. Pachucki, Phys. Rev. A 73, 022503 (2006)Google Scholar
  12. K.T. Chung, X.-W. Zhu, Z.-W. Wang, Phys. Rev. A 47, 1740 (1993)Google Scholar
  13. C.F. Fisher, T. Brage, P. Jönsson, Computational Atomic Structure (IOP Publishing Ltd., London, 1997), Chap. 8Google Scholar
  14. J. Komasa, W. Censek, J. Rychlewski, Phys. Rev. A 52, 4500 (1995)Google Scholar
  15. O. Jitrik, C.F. Bunge, Phys. Rev. A 56, 2614 (1997)Google Scholar
  16. G. Büsse, H. Kleindiest, A. Lüchow, Int. J. Quant. Chem. 66, 241 (1998)Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Western OntarioOntarioCanada

Personalised recommendations