Advertisement

The European Physical Journal D

, Volume 50, Issue 1, pp 27–33 | Cite as

Melting behaviours of nickel nanorods

  • L. S. PanEmail author
  • H. P. Lee
  • C. Lu
Clusters and Nanostructures

Abstract

By means of molecular dynamics simulations, we investigate the effect of size and axial crystal orientation on the melting behaviour of finitely and infinitely long nickel nanorods, using the quantum Sutton-Chen many body potential. It is found that the melting point of nanorods with decreased diameter is lower, regardless of finite or infinite length, which is in good agreement with the reported studies. The melting point also changes with the axial orientation of nanorods. The highest melting temperature is achieved for nanorods with axial crystal orientation 〈110〉, as the interval between any two layers along this direction is the shortest. For diameters of 3.6 and 4.9 nm, the finitely long nanorods exhibit a slightly lower melting point compared to infinitely long nanorods with the same diameter. For nanorods with diameter 2.3 nm, finitely long nanorods have higher melting points than infinitely long nanorods, due to reconstruction prior to melting. For diameters of 3.6 and 4.9 nm, nanorods (finite and infinite) have similar melting processes, but for nanorods with diameter 2.3 nm, shrinkage and reorganization takes place continuously during the melting process. For all nanorods, melting is found to initiate from surface atoms before diffusing inwards, into the internal portions.

PACS

65.80.+n Thermal properties of small particles, nanocrystals, and nanotubes 61.46.-w Structure of nanoscale materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Kondo, K. Takayanagi, Science 289, 606 (2000)Google Scholar
  2. B.L. Wang, S.Y. Yin, G. Wang, A. Buldum, Phys. Rev. Lett. 86, 2046 (2001)Google Scholar
  3. J. Mallet, K.Y. Zhang, C.L. Chien, T.S. Eagleton, P.C. Searson, Appl. Phys. Lett. 84, 3900 (2004)Google Scholar
  4. X.W. Wang, G.T. Fei, K. Zheng, Z. Jin, L.D. Zhang, Appl. Phys. Lett. 88, 173114 (2006)Google Scholar
  5. T. Karabacak, J.S. Deluca, P. Wang, G.A.T. Eyck, D. Ye, G.C. Wang, T.M. Lu, J. Appl. Phys. 99, 064304 (2006)Google Scholar
  6. S.J.A. Koh, H.P. Lee, Nanotechnology 17, 3451 (2006)Google Scholar
  7. S. Alavi, D.L. Thomson, J. Phys. Chem. A 110, 1518 (2006)Google Scholar
  8. H.A. Wu, Eur. J. Mech. A 25, 370 (2006)Google Scholar
  9. F. Ding, A. Rosen, K. Bolton, Phys. Rev. B 70, 075416 (2006)Google Scholar
  10. F. Ding, A. Rosen, S. Curtarolo, K. Bolton, Appl. Phys. Lett. 88, 133100 (2006)Google Scholar
  11. F. Ding, K. Bolton, A. Rosen, Appl. Surf. Sci. 252, 5254 (2006)Google Scholar
  12. S.J.A. Koh, H.P. Lee, C. Lu, Q.H. Cheng, Phys. Rev. B 72, 085414 (2005)Google Scholar
  13. S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, B. Joseph, Phys. Rev. B 71, 195415 (2005)Google Scholar
  14. Y. Wang, S. Teitel, C. Dellago, J. Chem. Phys. 122, 214722 (2005)Google Scholar
  15. L. Miao, V.R. Bhethanabotla, B. Joseph, Phys. Rev. B 72, 134109 (2005)Google Scholar
  16. L. Hui, F. Pederiva, B.L. Wang, J.L. Wang, G.H. Wang, Appl. Phys. Lett. 86, 011913 (2005)Google Scholar
  17. L. Hui, B.L. Wang, J.L. Wang, G.H. Wang, J. Chem. Phys. 120, 3431 (2004)Google Scholar
  18. Y.H. Wen, Z.Z. Zhu, R. Zhu, G.F. Shao, Physica E 25, 47 (2004)Google Scholar
  19. L. Wang, Y. Zhang, X. Bian, Y. Chen, Phys. Lett. A 310, 197 (2003)Google Scholar
  20. B. Wang, G. Wang, X. Chen, J. Zhao, Phys. Rev. B 67, 193403 (2003)Google Scholar
  21. J. Wang, X. Chen, G. Wang, B. Wang, W. Lu, J. Zhao, Phys. Rev. B 66, 085408 (2002)Google Scholar
  22. Y. Qi, T. Cagin, W.L. Johnson, W.L. Goddard III, J. Chem. Phys. 115, 385 (2001)Google Scholar
  23. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986)Google Scholar
  24. F. Ercolessi, E. Tosatti, M.P. Philos, Phys. Rev. Lett. 57, 719 (1986)Google Scholar
  25. D. Tomanek, A.A. Aligia, C.C. Balseiro, Phys. Rev. B 32, 5051 (1985)Google Scholar
  26. A.P. Sutton, J. Chen, Philos. Mag. Lett. 61, 139 (1990)Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Institute of High Performance ComputingSingaporeSingapore
  2. 2.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations