The European Physical Journal D

, Volume 48, Issue 3, pp 321–332 | Cite as

Magnetic interactions of cold atoms with anisotropic conductors

  • T. DavidEmail author
  • Y. Japha
  • V. Dikovsky
  • R. Salem
  • C. Henkel
  • R. Folman
Highlight Paper


We analyze atom-surface magnetic interactions on atom chips where the magnetic trapping potentials are produced by current carrying wires made of electrically anisotropic materials. We discuss a theory for time dependent fluctuations of the magnetic potential, arising from thermal noise originating from the surface. It is shown that using materials with a large electrical anisotropy results in a considerable reduction of heating and decoherence rates of ultra-cold atoms trapped near the surface, of up to several orders of magnitude. The trap loss rate due to spin flips is expected to be significantly reduced upon cooling the surface to low temperatures. In addition, the electrical anisotropy significantly suppresses the amplitude of static spatial potential corrugations due to current scattering within imperfect wires. Also the shape of the corrugation pattern depends on the electrical anisotropy: the preferred angle of the scattered current wave fronts can be varied over a wide range. Materials, fabrication, and experimental issues are discussed, and specific candidate materials are suggested.


37.10.Gh Atom traps and guides 39.25.+k Atom manipulation (scanning probe microscopy, laser cooling, etc.) 72.15.-v Electronic conduction in metals and alloys 03.75.-b Matter waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. Folman, P. Krüger, J. Schmiedmayer, J.H. Denschlag, C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002) Google Scholar
  2. J. Fortágh, C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007) CrossRefADSGoogle Scholar
  3. W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Nature 413, 498 (2001) CrossRefADSGoogle Scholar
  4. S. Aubin, S. Myrskog, M.H.T. Extavour, L.J. LeBlanc, D. McKay, A. Stummer, J.H. Thywissen, Nature Physics 2, 384 (2006) CrossRefADSGoogle Scholar
  5. P. Treutlein, P. Hommelhoff, T. Steinmetz, T.W. Hänsch, J. Reichel, Phys. Rev. Lett. 92, 203005 (2004) CrossRefADSGoogle Scholar
  6. S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, J. Schmiedmayer, Nature Physics 2, 710 (2006) CrossRefADSGoogle Scholar
  7. S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, J. Schmiedmayer, Nature 435, 440 (2005) CrossRefADSGoogle Scholar
  8. Y. Colombe, E. Knyazchyan, O. Morizot, B. Mercier, V. Lorent, H. Perrin, Europhys. Lett. 67, 593 (2004) CrossRefADSGoogle Scholar
  9. Y.J. Wang, D.Z. Anderson, V.M. Bright, E.A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R.A. Saravanan, S.R. Segal, S. Wu, Phys. Rev. Lett. 94, 090405 (2005) CrossRefADSGoogle Scholar
  10. S. Hofferberth, B. Fischer, T. Schumm, J. Schmiedmayer, I. Lesanovsky, Phys. Rev. A 76, 013401 (2007) CrossRefADSGoogle Scholar
  11. A. Haase, B. Hessmo, J. Schmiedmayer, Optics Letters 31, 268 (2006) CrossRefADSGoogle Scholar
  12. S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, I. Bar-Joseph, P. Krüger, J. Schmiedmayer, Appl. Phys. Lett. 88, 264103 (2006) CrossRefADSGoogle Scholar
  13. T. Kishimoto, H. Hachisu, J. Fujiki, K. Nagato, M. Yasuda, H. Katori, Phys. Rev. Lett. 96, 123001 (2006); K. Nagato, T. Ooi, T. Kishimoto, H. Hachisu, H. Katori, M. Nakao, Precision Engineering 30, 387 (2006) CrossRefADSGoogle Scholar
  14. C. Henkel, P. Krüger, R. Folman, J. Schmiedmayer, Appl. Phys. B 76, 174 (2003) CrossRefADSGoogle Scholar
  15. P. Krüger, L.M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, J. Schmiedmayer, Phys. Rev. A 76, 063621 (2007) CrossRefADSGoogle Scholar
  16. S. Kraft, A. Günther, H. Ott, D. Wharam, C. Zimmermann, J. Fortágh, J. Phys. B 35, L469 (2002) Google Scholar
  17. A.E. Leanhardt, Y. Shin, A.P. Chikkatur, D. Kielpinski, W. Ketterle, D.E. Pritchard, Phys. Rev. Lett. 90, 100404 (2003) CrossRefADSGoogle Scholar
  18. D.M. Harber, J.M. McGuirk, J.M. Obrecht, E.A. Cornell, J. Low Temp. Phys. 133, 229 (2003) CrossRefGoogle Scholar
  19. J. Fortágh, H. Ott, S. Kraft, A. Günther, C. Zimmermann, Phys. Rev. A 66, 041604 (2002) CrossRefADSGoogle Scholar
  20. M.P.A. Jones, C.J. Vale, D. Sahagun, B.V. Hall, E.A. Hinds, Phys. Rev. Lett. 91, 080401 (2003) CrossRefADSGoogle Scholar
  21. Y. Lin, I. Teper, C. Chin, V. Vuletić, Phys. Rev. Lett. 92, 050404 (2004) CrossRefADSGoogle Scholar
  22. B. Zhang, C. Henkel, E. Haller, S. Wildermuth, S. Hofferberth, P. Krüger, J. Schmiedmayer, Eur. Phys. J. D 35, 97 (2005) CrossRefADSGoogle Scholar
  23. V. Dikovsky, Y. Japha, C. Henkel, R. Folman, Eur. Phys. J. D 35, 87 (2005) CrossRefADSGoogle Scholar
  24. S. Scheel, P.K. Rekdal, P.L. Knight, E.A. Hinds, Phys. Rev. A 72, 042901 (2005) CrossRefADSGoogle Scholar
  25. P.K. Rekdal, B.S.K. Skagerstam, U. Hohenester, A. Eiguren, Phys. Rev. Lett. 97, 070401 (2006) CrossRefGoogle Scholar
  26. S. Scheel, E.A. Hinds, P.L. Knight, arXiv:quant-ph/0610095 Google Scholar
  27. B.S.K. Skagerstam, U.H. Hohenester, A. Eiguren, P.K. Rekdal, arXiv:quant-ph/0610251 Google Scholar
  28. P.K. Rekdal, B.S.K. Skagerstam, Phys. Rev. A 75, 022904 (2007) CrossRefADSGoogle Scholar
  29. U. Hohenester, A. Eiguren, S. Scheel, E.A. Hinds, Phys. Rev. A 76, 033618 (2007); B.S.K. Skagerstam, P.K. Rekdal, Phys. Rev. A 76, 052901 (2007) CrossRefADSGoogle Scholar
  30. Indeed, Reichel_clock is the only experiment in which surface induced spin decoherence was measured. However, as the main objective of this experiment was to minimize shifts to an on-chip atomic clock, a specific choice of superposition states and magnetic field value was made, resulting in a surface noise induced decoherence a level weaker than that induced by the technical instabilities of the experiment. In regards to spatial decoherence, no experiment to study the dependence of the decoherence rate on atom-surface distance was performed as of yet Google Scholar
  31. T. Schumm, J. Estéve, C. Figl, J.B. Trebbia, C. Aussibal, H. Nguyen, D. Mailly, I. Bouchoule, C.I. Westbrook, A. Aspect, Eur. Phys. J. D 32, 171 (2005) CrossRefADSGoogle Scholar
  32. J. Estéve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C.I. Westbrook, A. Aspect, Phys. Rev. A 70, 043629 (2004) CrossRefADSGoogle Scholar
  33. D.W. Wang, M.D. Lukin, E. Demler, Phys. Rev. Lett. 92, 076802 (2004) CrossRefADSGoogle Scholar
  34. S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, J. Schmiedmayer, Science 319, 1226 (2008) CrossRefADSGoogle Scholar
  35. J.B. Trebbia, C.L. Garrido Alzar, R. Cornelussen, C.I. Westbrook, I. Bouchoule, Phys. Rev. Lett. 98, 263201 (2007) CrossRefADSGoogle Scholar
  36. Y. Japha, O. Entin-Wohlman, T. David, R. Salem, S. Aigner, J. Schmiedmayer, R. Folman, Phys. Rev. B 77, 201407(R) (2008) CrossRefADSGoogle Scholar
  37. C. Henkel, S. Pötting, Appl. Phys. B 72, 73 (2001) ADSGoogle Scholar
  38. C. Henkel, S. Pötting, M. Wilkens, Appl. Phys. B 69, 379 (1999) CrossRefADSGoogle Scholar
  39. R. Fermani, S. Scheel, P.L. Knight, Phys. Rev. A 73, 032902 (2006) CrossRefADSGoogle Scholar
  40. C. Henkel and B. Horovitz, arXiv:0709.1242v1/quant-ph (2008) Google Scholar
  41. B. Zhang, C. Henkel, J. Appl. Phys. 102, 084907 (2007) CrossRefADSGoogle Scholar
  42. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd edn. (Pergamon, 1977) Google Scholar
  43. L. Mandel, E. Wolf, Optical coherence and quantum optics (Cambridge, 1995) Google Scholar
  44. It should be noted that considering the noise only at the trap center (as usually done) may not be sufficient, as by doing so one neglects the fact that the trap is commonly spatially inhomogeneous (e.g. harmonic). The atoms are distributed in the trap with a certain density profile, and move as they have finite temperature. Taking this into account introduces corrections to the theory which in some cases may be important. However, for the purposes of this study this is not crucial, and we will address this issue separately Google Scholar
  45. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics III: Elements of Random Fields (Springer, Berlin, 1989) Google Scholar
  46. E.M. Lifshitz, Sov. Phys. JETP 2, 73 (1956); E.M. Lifshitz, J. Exp. Theor. Phys. USSR 29, 94 (1955) MathSciNetGoogle Scholar
  47. B.A. Sanborn, P.B. Allen, D.A. Papaconstantinopoulos, Phys. Rev. B 40, 6037 (1989) CrossRefADSGoogle Scholar
  48. National Physical Laboratory Kaye and Laby Tables of Physical and Chemical constants, website Google Scholar
  49. S.L. Bud'ko, P.C. Canfield, C.H. Mielke, A.H. Lacerda, Phys. Rev. B 57, 13624 (1998) CrossRefADSGoogle Scholar
  50. D.G. Schlom, S.B. Knapp, S. Wozniak, L.-N. Zou, J. Park, Y. Liu, M.E. Hawley, G.W. Brown, A. Dabkowski, H.A. Dabkowska, R. Uecker, P. Reiche, Supercond. Sci. Technol. 10, 891 (1997) CrossRefADSGoogle Scholar
  51. A.W. Tyler, A.P. Mackenzie, S. Nishizaki, Y. Maeno, Phys. Rev. B 58, R10107 (1998) Google Scholar
  52. T. Katsufuji, M. Kasai, Y. Tokura, Phys. Rev. Lett. 76, 126 (1995) CrossRefADSGoogle Scholar
  53. R.J. Cava, B. Batlogg, K. Kiyono, H. Takagi, J.J. Krajewski, W.F. Peck Jr., L.W. Rupp Jr., C.H. Chen, Phys. Rev. B 49, 11890 (1994) CrossRefADSGoogle Scholar
  54. S.I. Ikeda, Y. Maeno, S. Nakatsuji, M. Kosaka, Y. Owatoko, Phys. Rev. B 62, R6089 (2000) Google Scholar
  55. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, R12685 (1997) Google Scholar
  56. Y. Furubayashi, T. Terashima, I. Chong, M. Takano, Phys. Rev. B 60, R3720 (1999) Google Scholar
  57. N. Motoyama, T. Osafune, T. Kakeshita, H. Eisaki, S. Uchida, Phys. Rev. B 55, R3386 (1997) Google Scholar
  58. V.N. Zavaritsky, A.S. Alexandrov, Phys. Rev. B 71, 012502 (2005) CrossRefADSGoogle Scholar
  59. K. Takenaka, K. Mizuhashi, H. Takagi, S. Uchida, Phys. Rev. B 50, 6534 (1994) CrossRefADSGoogle Scholar
  60. Y. Nakamura, S. Uchida, Phys. Rev. B 47, 8369 (1993) CrossRefADSGoogle Scholar
  61. L. Edman, B. Sundqvist, E. McRae, E. Litvin-Staszewska, Phys. Rev. B 57, 6227 (1998) CrossRefADSGoogle Scholar
  62. Z. Wang, F. Xu., C. Lu, H. Zhang, Q. Xu, J. Zu, arXiv:0801.3298 Google Scholar
  63. Z.M. Wang, Q.Y. Xu, G. Ni, Y.W. Du, Phys. Lett. A 314, 328 (2003) CrossRefADSGoogle Scholar
  64. HOPG is usually obtained commercially. Typical details could be found for example through SPI supplies (SPI supplies, or Advanced Ceramics ( Google Scholar
  65. C.A. Kuntscher, D. van der Marel, M. Dressel, F. Lichtenberg, J. Mannhart, Phys. Rev. B 67, 035105 (2003) CrossRefADSGoogle Scholar
  66. C.A. Kuntscher, S. Schuppler, P. Haas, B. Gorshunov, M. Dressel, M. Grioni, F. Lichtenberg, A. Herrnberger, F. Mayr, J. Mannhart, Phys. Rev. Lett. 89, 236403 (2002); J.E. Weber, C. Kegler, N. Bütgen, H.-A. Krug von Nidda, A. Loidl, F. Lichtenberg, Phys. Rev. B 64, 235414 (2001) CrossRefADSGoogle Scholar
  67. C.D.J. Sinclair, E.A. Curtis, I. Llorente-Garcia, J.A. Retter, B.V. Hall, S. Eriksson, B.E. Sauer, E.A. Hinds, Phys. Rev. A 72, 031603(R) (2005); C.D.J. Sinclair, J.A. Retter, E.A. Curtis, B.V. Hall, I. Llorente-Garcia, S. Eriksson, B.E. Sauer, E.A. Hinds, Eur. Phys. J. D 35, 105 (2005) CrossRefADSGoogle Scholar
  68. W.A.M. Aarnink, R.P.J. IJsselsteijn, J. Gao, A. van Silfhout, H. Rogalla, Phys. Rev. B 45, 13002 (1992) CrossRefADSGoogle Scholar
  69. F. Lichtenberg, A. Herrnberger, K. Weidenmann, J. Mannhart, Prog. Solid State Chem. 29, 1 (2001) CrossRefGoogle Scholar
  70. C.A. Kuntscher, S. Schuppler, P. Haas, B. Gorshunov, M. Dressel, M. Grioni, F. Lichtenberg, Phys. Rev. B 70, 245123 (2004) CrossRefADSGoogle Scholar
  71. F. Lichtenberg, A. Herrnberger, K. Weidenmann, Submitted to Prog. Solid State Chem. (2007) Google Scholar
  72. F. Lichtenberg, private communication. Google Scholar
  73. S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, D. Mahalu, I. Bar-Joseph, J. Schmiedmayer, Appl. Phys. Lett. 85, 14 (2004) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • T. David
    • 1
    Email author
  • Y. Japha
    • 1
  • V. Dikovsky
    • 1
  • R. Salem
    • 1
  • C. Henkel
    • 2
  • R. Folman
    • 1
  1. 1.Department of PhysicsBen-Gurion UniversityBeér ShevaIsrael
  2. 2.Institut für Physik und Astronomie, Universität PotsdamPotsdamGermany

Personalised recommendations