Advertisement

Vector Cooper pairs and coherent-population-trapping-like states in ensemble of interacting fermions

  • A. V. Taichenachev
  • V. I. YudinEmail author
Quantum Optics and Quantum Information
  • 39 Downloads

Abstract.

Using the standard Hamiltonian of the BCS theory, we show that in an ensemble of interacting fermions with the spin 1/2 there exist coherent states |NC〉, which nullify the Hamiltonian of the interparticle interaction (scattering). These states have an analogy with the well-known in quantum optics the coherent population trapping (CPT) effect. The structure of these CPT-like states corresponds to Cooper pairs with the total spin S = 1. The found states have a huge degree of degeneracy and carry a macroscopic magnetic moment, that allows us to construct a new model of the magnetism connected with the delocalized electrons in metals (conductors). A principal possibility to apply the obtained results to the superfluid 3He is also demonstrated.

PACS.

42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light; electromagnetically induced transparency and absorption 74.20.Fg BCS theory and its development 75.10.-b General theory and models of magnetic ordering 67.30.H- Superfluid phase of 3He 

References

  1. G. Alzetta, A. Gozzini, L. Moi, G. Orriols, Nuovo Cim. B 36, 5 (1976) CrossRefADSGoogle Scholar
  2. E. Arimondo, G. Orriols, Lett. Nuovo Cim. 17, 33 (1976) CrossRefGoogle Scholar
  3. H.R. Gray, R.M. Whitley, C.R. Stroud, Opt. Lett. 3, 218 (1978) ADSCrossRefGoogle Scholar
  4. B.D. Agap'ev, M.B. Gornyi, B.G. Matisov, Yu.V. Rozhdestvensky, Uspekhi Fiz. Nauk 163, 35 (1993) Google Scholar
  5. E. Arimondo, in Progress in Optics, edited by E. Wolf, XXXV, 257 (1996) Google Scholar
  6. P.R. Hemmer, S. Ezekiel, C.C. Leiby Jr., Opt. Lett. 8, 440 (1983) ADSGoogle Scholar
  7. A. Akulshin, A. Celikov, V. Velichansky, Opt. Commun. 84, 139 (1991) CrossRefADSGoogle Scholar
  8. M.O. Scully, M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992) CrossRefADSGoogle Scholar
  9. J. Kitching, S. Knappe, L. Vukicevic, L. Hollberg, R. Wynands, W. Weidman, IEEE Trans. Instrum. Meas. 49, 1313 (2000) CrossRefGoogle Scholar
  10. S.E. Harris, Physics Today 50(7), 36 (1997) CrossRefGoogle Scholar
  11. O. Kocharovskaya, Phys. Rep. 129, 175 (1992) CrossRefADSGoogle Scholar
  12. M.O. Scully, Phys. Rep. 129, 191 (1992) CrossRefADSGoogle Scholar
  13. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen-Tannoudji, Phys. Rev. Lett. 61, 826 (1988) CrossRefADSGoogle Scholar
  14. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2112 (1989) ADSGoogle Scholar
  15. P. Marte, P. Zoller, J.L. Hall, Phys. Rev. A 44, 4118 (1991) CrossRefADSGoogle Scholar
  16. M. Weitz, B.C. Young, S. Chu, Phys. Rev. Lett. 73, 2563 (1994) CrossRefADSGoogle Scholar
  17. P.D. Featonby, G.S. Summy, C.L. Webb, R.M. Godun, M.K. Oberthaler, A.C. Wilson, C.J. Foot, K. Burnett, Phys. Rev. Lett. 81, 495 (1998) CrossRefADSGoogle Scholar
  18. I.E. Mazets, B.G. Matisov, Zh. Eksp. Teor. Fiz. 64, 483 (1996) Google Scholar
  19. M. Fleschauer, M.D. Lukin, Phys. Rev. Lett. 84, 5094 (2000) CrossRefADSGoogle Scholar
  20. M. Fleschauer, M.D. Lukin, Phys. Rev. A 65, 022314 (2002) CrossRefADSGoogle Scholar
  21. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Nature 409, 490 (2001) CrossRefADSGoogle Scholar
  22. D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Phys. Rev. Lett. 86, 783 (2001) CrossRefADSGoogle Scholar
  23. A.S. Zibrov, A.B. Matsko, O. Kocharovskaya, Y.V. Rostovtsev, G.R. Welch, M.O. Scully, Phys. Rev. Lett. 88, 103601 (2002) CrossRefADSGoogle Scholar
  24. C.H. van der Wal, M.D. Eisaman, A. Andre, R.L. Walsworth, D.F. Phillips, A.S. Zibrov, M.D. Lukin, Science 301, 196 (2003) CrossRefADSGoogle Scholar
  25. F.T. Hioe, C.E. Carroll, Phys. Rev. A 37, 3000 (1988) CrossRefADSGoogle Scholar
  26. V.S. Smirnov, A.M. Tumaikin, V.I. Yudin, Zh. Eksp. Teor. Fiz. 96, 1613 (1989) Google Scholar
  27. A.M. Tumaikin, V.I. Yudin, Zh. Eksp. Teor. Fiz. 98, 81 (1990) Google Scholar
  28. A.V. Taichenachev, A.M. Tumaikin, V.I. Yudin, Europhys. Lett. 45, 301 (1999) CrossRefADSGoogle Scholar
  29. A.V. Taichenachev, A.M. Tumaikin, V.I. Yudin, Zh. Eksp. Teor. Fiz. 118, 77 (2000) Google Scholar
  30. A.V. Taichenachev, A.M. Tumaikin, V.I. Yudin, Zh. Eksp. Teor. Fiz. 79, 75 (2004) Google Scholar
  31. A.V. Taichenachev, A.M. Tumaikin, V.I. Yudin, Europhys. Lett. 72, 562 (2005) CrossRefADSGoogle Scholar
  32. Ch. Bolkart, R. Weiss, D. Rostohar, M. Weitz, Laser Phys. 15, 3 (2005) Google Scholar
  33. A.M. Tumaikin, V.I. Yudin, Physica B 175, 161 (1991) CrossRefADSGoogle Scholar
  34. J. Bardeen, L.N. Cooper, J.R. Schriffer, Phys. Rev. 108, 1175 (1957) zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. A.V. Taichenachev, V.I. Yudin, arXiv:quant-ph/0610012 (2006) Google Scholar
  36. P.W. Anderson, P. Morel, Phys. Rev. Lett. 5, 136 (1960) zbMATHCrossRefADSGoogle Scholar
  37. L.P. Gor'kov, V.M. Galitsky, Zh. Eksp. Teor. Fiz. 40, 1124 (1961) Google Scholar
  38. V.G. Vaks, V.M. Galitsky, A.I. Larkin, Zh. Eksp. Teor. Fiz. 42, 1319 (1962) MathSciNetGoogle Scholar
  39. I.A. Privorotsky, Zh. Eksp. Teor. Fiz. 43, 2255 (1962) Google Scholar
  40. A.I. Larkin, Zh. Eksp. Teor. Fiz. 5, 205 (1965) Google Scholar
  41. E.G. Stoner, Proc. Roy. Soc. A 165, 372 (1938) CrossRefADSGoogle Scholar
  42. V.P. Mineev, Uspekhi Fiz. Nauk 139, 303 (1983) Google Scholar
  43. G.E. Volovik, Uspekhi Fiz. Nauk 143, 73 (1984) Google Scholar
  44. V.L. Ginzburg, Uspekhi Fiz. Nauk 97, 601 (1969) ADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Laser Physics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations