The European Physical Journal D

, Volume 48, Issue 3, pp 355–364 | Cite as

First principle study of free and surface terminated CdTe nanoparticles

  • Somesh Kr. Bhattacharya
  • Anjali KshirsagarEmail author
Clusters and Nanostructures


Density functional calculations of structural and electronic properties of stoichiometric and nonstoichiometric CdTe clusters, containing up to few tens of atoms, are carried out using projector augmented wave method. Molecular dynamics has been performed for Cd12Te12 and Cd15Te15 to predict the structure corresponding to global energy minimum. Cage type structures and bulk fragments, both in zinc blende and wurtzite structures, are used as starting geometries and conjugate gradient method is used to locate the local energy minima for other clusters. The aim of these calculations is to get the energetically favorable probable structures, to be compared with the experimentally known structures. Clusters are relaxed both in vacuum and in the presence of surface passivating ligands and the resulting structural rearrangement is analyzed. As expected, passivation increases the stability of an individual cluster, as indicated by specific properties like binding energy, vertical detachment energy, electron affinity etc. Passivation also locks the symmetry for three-dimensional structures but the small CdnTen (1 ≤ n ≤ 6) clusters, which are planar, attain higher symmetry structures on passivation. We observe `self-healing' mechanism viz., opening of optical gap on relaxation without the aid of passivating ligand, in CdTe clusters as observed in CdSe clusters [A. Puzder et al., Phys. Rev. Lett. 92, 217401 (2004)]. However, we note that 'self-healing' is a stoichiometry dependent phenomenon. Te atoms are found to achieve a total coordination of 4 on passivation, a fact useful in chemical synthesis of nanoclusters.


61.46.Df Structure of nanocrystals and nanoparticles (“colloidal” quantum dots but not gate-isolated embedded quantum dots) 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals 73.21.La Quantum dots 81.65.Rv Passivation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W.W. Yu, A. Wang, X. Peng, Chem. Mater. 15, 4300 (2003) and references therein CrossRefGoogle Scholar
  2. Z.A. Peng, X. Peng, J. Am. Chem. Soc. 123, 183 (2001) and references therein CrossRefGoogle Scholar
  3. T. Omata, K. Nose, S. Otsuka-Yao-Matsuo, H. Nakamura1, H. Maeda1, Jpn J. Appl. Phys. 44, 452 (2005) CrossRefADSGoogle Scholar
  4. Y. Wang, N. Herron, K. Moller, T. Bein, Solid State Commun. 77, 33 (1991) CrossRefADSGoogle Scholar
  5. L. Levy, J.F. Hochepeid, M.P. Pileni, J. Phys. Chem. 100, 18322 (1996) CrossRefGoogle Scholar
  6. J.M. Matxain, J.M. Mercero, J.E. Fowler, J.M. Ugalde, J. Phys. Chem. A 108, 10502 (2004) CrossRefGoogle Scholar
  7. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993) CrossRefGoogle Scholar
  8. A. Puzder, A.J. Williamson, F. Gygi, G. Galli, Phys. Rev. Lett. 92, 217401 (2004) CrossRefADSGoogle Scholar
  9. A. Kasuya, R. Sivamohan, Y.A. Barnakov, I.M. Dmitruk, T. Nirasawa, V.R. Romanyuk, V. Kumar, S.V. Mamykin, K. Tohji, B. Jeyadevan, K. Shinoda, T.Kudo, O. Terasaki, Z. Liu, R.V. Belosludov, V. Sundarajan, Y. Kawazoe, Nature Mat. 3, 99 (2004) CrossRefADSGoogle Scholar
  10. S.Kr. Bhattacharya, A. Kshirsagar, Phys. Rev. B 75, 035402 (2007) CrossRefADSGoogle Scholar
  11. W.W. Yu, X. Peng, Angew. Chem. Int. Ed. 41, 2368 (2002) CrossRefADSGoogle Scholar
  12. B. Dubertret, P. Skourdies, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, Science 298, 1759 (2002) CrossRefADSGoogle Scholar
  13. X. Wu, H. Liu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, M.P. Bruchez, Nat. Biotechnol. 21, 41 (2003) CrossRefGoogle Scholar
  14. X. Huang, E. Lindgreen, J.R. Chelikowsky, Phys. Rev. B 71, 165328 (2005) CrossRefADSGoogle Scholar
  15. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996); G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996) CrossRefADSGoogle Scholar
  16. N. Kosugi, J. Comput. Phys. 55, 426 (1984) CrossRefADSzbMATHGoogle Scholar
  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  18. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994); G. Kresse, J. Joubert, Phys. Rev. B 59, 1758 (1999) CrossRefADSGoogle Scholar
  19. V. Sundarajan, private communication Google Scholar
  20. M. Yu, G.W. Fernando, R. Li, F. Papadimitrakopoulos, N. Shi, R. Ramprasad, Appl. Phys. Lett. 88, 231910 (2006) CrossRefADSGoogle Scholar
  21. S. Pokrant, K.B. Whaley, Eur. Phys. J. D 6, 225 (1999) CrossRefADSGoogle Scholar
  22. A.C. Carter, C.E. Bouldin, K.M. Kenner, M.I. Bell, J.C. Woicik, S.A. Majetich, Phys. Rev. B 55, 13822 (1997) CrossRefADSGoogle Scholar
  23. J.-O. Joswig, M. Springborg, G. Seifert, J. Phys. Chem. B 104, 2617 (2000) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of PunePuneIndia

Personalised recommendations