Advertisement

The European Physical Journal D

, Volume 48, Issue 3, pp 365–373 | Cite as

Determination of the OH radical in atmospheric pressure dielectric barrier discharge plasmas using near infrared cavity ring-down spectroscopy

  • Z. W. Liu
  • X. F. Yang
  • A. M. Zhu
  • G. L. Zhao
  • Y. XuEmail author
Plasma Physics

Abstract.

The hydroxyl radical (OH) plays an important role in combustion systems, atmospheric chemistry and the removal of air pollutants by non-thermal plasmas. The present work reports the determination of the hydroxyl radicals in atmospheric dielectric barrier discharge plasmas via near infrared continuous wave cavity ring-down spectroscopy. The P-branches of OH X2Πi (ν' = 2 ←ν′′ = 0) bands were used for its number density measurements. The minimum measurable absorption coefficient is about 3 × 10-8 cm-1 in DBD plasmas. At certain experimental conditions (a.c. frequency of 70 kHz, 6700 ppm H2O in He, 1 atm), when the peak-to-peak discharge voltage varied from 6 kV to 10.4 kV, the determined OH radical concentration increased from (2.1 ± 0.1) × 1013 molecules cm-3 to (3.7 ± 0.1) × 1013 molecules cm-3. The plasma gas temperature, derived from the Boltzmann plots of OH rotational population distributions, ranged from 312 ± 10 K to 363 ± 10 K when the discharge voltage was raised in the above range. The influences of O2 and N2 addition on the production of OH radicals have been also investigated.

PACS.

39.30.+w Spectroscopic techniques 52.70.-m Plasma diagnostic techniques and instrumentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Newman, in Measurement challenges in atmospheric chemistry (American Chemical Society, Washington, DC, 1993) Google Scholar
  2. T. Aizawa, Appl. Opt. 40, 4894 (2001) CrossRefADSGoogle Scholar
  3. G. Meijer, M.G.H. Boogaarts, R.T. Jongma, D.H. Parker, Chem. Phys. Lett. 217, 112 (1994) CrossRefADSGoogle Scholar
  4. X. Mercier, E. Therssen, J.F. Pauwels, P. Desgroux, Chem. Phys. Lett. 299, 75 (1999) CrossRefADSGoogle Scholar
  5. C.O. Laux, T.G. Spence, C.H. Kruger, R.N. Zare, Plasma Sources Sci. Technol. 12, 125 (2003) CrossRefADSGoogle Scholar
  6. Z.Z. Su, K. Ito, K. Takashima, S. Katsuta, K. Onda, A. Mizuno, J. Phys. D: Appl. Phys. 35, 3192 (2002) CrossRefADSGoogle Scholar
  7. M. Sun, Y. Wu, J. Li, N.H. Wang, J. Wu, K.F. Shang, J.L. Zhang, Plasma Chem. Plasma Proc. 25, 31 (2005) zbMATHCrossRefGoogle Scholar
  8. Z. Falkenstein, J. Appl. Phys. 81, 7158 (1997) CrossRefADSGoogle Scholar
  9. A. Ershov, J. Borysow, J. Phys. D: Appl. Phys. 28, 68 (1995) CrossRefADSGoogle Scholar
  10. R. Sankaranarayanan, B. Pashaie, S.K. Dhali, Appl. Phys. Lett. 77, 2970 (2000) CrossRefADSGoogle Scholar
  11. D.K. Killinger, C.C. Wang, Chem. Phys. Lett. 52, 374 (1977) CrossRefADSGoogle Scholar
  12. G.H. Mount, F.L. Eisele, Science 256, 1187 (1992) CrossRefADSGoogle Scholar
  13. D.M. Bakalyar, J.V. James, C.C. Wang, Appl. Opt. 21, 2901 (1982) ADSCrossRefGoogle Scholar
  14. A.O. Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988) CrossRefADSGoogle Scholar
  15. D. Romanini, A.A. Kachanov, N. Sadeghi, Chem. Phys. Lett. 264, 316 (1997) CrossRefADSGoogle Scholar
  16. V.A. Lozovsky, I. Derzy, S. Cheskis, Chem. Phys. Lett. 287, 407 (1998) CrossRefADSGoogle Scholar
  17. S. Cheskis, I. Derzy, V.A. Lozovsky, A. Kachanov, D. Romanini, Appl. Phys. B 66, 377 (1998) CrossRefADSGoogle Scholar
  18. M.C. Beek, J.J. Meulen, Chem. Phys. Lett. 337, 237 (2001) CrossRefADSGoogle Scholar
  19. C. Wang, F.J. Mazzotti, S.P. Koirala, C.B. Winstead, G.P. Miller, Appl. Spectrosc. 58, 734 (2004) CrossRefADSGoogle Scholar
  20. J.J. Scherer, D. Voelkel, D.J. Rakestraw, Appl. Phys. B 64, 699 (1997) CrossRefADSGoogle Scholar
  21. R. Peeters, G. Berden, G. Meijer, Appl. Phys. B 73, 65 (2001) ADSGoogle Scholar
  22. A. Khacef, J.M. Cormier, J.M. Pouvesle, J. Phys. D: Appl. Phys. 35, 1491 (2002) CrossRefADSGoogle Scholar
  23. D.G. Storch, M.J. Kushner, J. Appl. Phys. 73, 51 (1993) CrossRefADSGoogle Scholar
  24. M.K. Boudam, M. Moisan, B. Saoudi, C. Popovici, N. Gherardi, F. Massines, J. Phys. D: Appl. Phys. 39, 3494 (2006) CrossRefADSGoogle Scholar
  25. R. Dorai, M.J. Kushner, J. Phys. D: Appl. Phys. 36, 666 (2003) CrossRefADSGoogle Scholar
  26. M.B. Chang, S.C. Yang, AICHE J. 47, 1226 (2001) CrossRefGoogle Scholar
  27. T. Akitsu, H. Ohkawa, M. Tsuji, H. Kimura, M. Kogoma, Surf. Coat. Technol. 193, 29 (2005) CrossRefGoogle Scholar
  28. S.H. Wu, P. Dupré, T.A. Miller, Phys. Chem. Chem. Phys. 8, 1682 (2006) CrossRefGoogle Scholar
  29. http://www.hitran.com Google Scholar
  30. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.Y. Mandin, J. Schroeder, A. Mccann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi, J. Quant. Spetr. Rad. Trans. 60, 665 (1996) CrossRefADSGoogle Scholar
  31. S.S. Brown, H. Stark, A.R. Ravishankara, Appl. Phys. B 75, 173 (2002) CrossRefADSGoogle Scholar
  32. J.M. Brown, J.T. Hougen, K.P. Huber, J.W.C. Johns, I. Kopp, H. Lefebvre-Brion, A.J. Merer, D.A. Ramsay, J. Rastas, R.N. Zare, J. Mol. Spectrosc. 55, 500 (1975) CrossRefADSGoogle Scholar
  33. K.H. Becher, U. Kogelschatz, K.H. Schoenbach, R.J. Barker, in Non-Equilibrium Air Plasmas at Atmospheric Pressure (Institute of Physics Publishing, Dirac House, Temple Back, Bristol, 2005) Google Scholar
  34. O. Motret, C. Hibert, S. Pellerin, J.M. Pouvesle, J. Phys. D: Appl. Phys. 33, 1493 (2000) CrossRefADSGoogle Scholar
  35. T. Gerber, W. Lüthy, J. Chem. Phys. 79, 5445 (1983) CrossRefADSGoogle Scholar
  36. C. Hibert, I. Gaurand, O. Motret, J.M. Pouvesle, J. Appl. Phys. 85, 7070 (1999) CrossRefADSGoogle Scholar
  37. J.D. Gorfinkiel, L.A. Morgan, J. Tennyson, J. Phys. B: At. Mol. Opt. Phys. 35, 543 (2002) CrossRefADSGoogle Scholar
  38. T. Harb, W. Kedzierski, J.W. McConkey, J. Chem. Phys. 115, 5507 (2001) CrossRefADSGoogle Scholar
  39. Y. Itikawa, N. Masson, J. Phys. Chem. Ref. Data 34, 1 (2005) CrossRefADSGoogle Scholar
  40. K. Behringer, U. Fantz, J. Phys. D: Appl. Phys. 27, 2128 (1994) CrossRefADSGoogle Scholar
  41. A. Bultel, C. Letellier, A. Bourdon, Phys. Lett. 323, 267 (2004) zbMATHCrossRefGoogle Scholar
  42. O. Eichwald, M.A. Yousfi, M.D. Benabdessadok, J. Appl. Phys. 82, 4781 (1997) CrossRefADSGoogle Scholar
  43. R. Atkinson1, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, Atmos. Chem. Phys. 4, 1461 (2004) CrossRefGoogle Scholar
  44. J.T. Herron, J. Phys. Chem. Ref. Data 28, 1453 (1999) CrossRefADSGoogle Scholar
  45. W.R. Binns, J.L. Ahl, J. Chem. Phys. 68, 538 (1978) CrossRefADSGoogle Scholar
  46. C.B. Collins, F.W. Lee, J. Chem. Phys. 70, 1275 (1979) CrossRefADSGoogle Scholar
  47. N.K. Bibinov, A.A. Fateev, K. Wiesemann, J. Phys. D: Appl. Phys. 34, 1819 (2001) CrossRefADSGoogle Scholar
  48. K.R. German, J. Chem. Phys. 62, 2584 (1975) CrossRefADSGoogle Scholar
  49. A.E. Bailey, D.E. Heard, D.A. Henderson, P.H. Paul, Chem. Phys. Lett. 302, 132 (1999) CrossRefADSGoogle Scholar
  50. A.E. Bailey, D.E. Heard, P.H. Paul, M.J. Philling, J. Chem. Soc. Faraday Trans. 93, 2915 (1997) CrossRefGoogle Scholar
  51. K.H. Becher, D. Haaks, Z. Naturforsch. A 28, 249 (1973) ADSGoogle Scholar
  52. B.M. Penetrante, M.C. Hsiao, B.T. Merritt, G.E. Vogtlin, P.H. Wallman, Appl. Phys. Lett. 68, 3719 (1996) CrossRefADSGoogle Scholar
  53. N.K. Bibinov, A.A. Fateev, K. Wiesemann, Plasma Sources Sci. 10, 579 (2001) CrossRefADSGoogle Scholar
  54. A.S. Chiper, V. Anita, C. Agheorghiesei, V. Pohoata, M. Anita, G. Popa, Plasma Process. Polym. 1, 57 (2004) CrossRefGoogle Scholar
  55. V. Poenariu, M.R. Wertheimer, R. Bartnikas, Plasma Process. Polym. 3, 17 (2006) CrossRefGoogle Scholar
  56. J.M. Pouvesle , A. Bouchoule, J. Stevefelt, J. Chem. Phys. 77, 817 (1982) CrossRefADSGoogle Scholar
  57. G.H. Dieke, H.M. Crosswhite, J. Quant. Spectr. Rad. Trans. 2, 97 (1962) CrossRefADSGoogle Scholar
  58. J. Loureiro, C.M. Ferreira, J. Phys. D: Appl. Phys. 19, 17 (1986) CrossRefADSGoogle Scholar
  59. V. Guerra, P.A. Sa, J.L. Loureiro, J. Phys. D: Appl. Phys. 34, 1745 (2001) CrossRefADSGoogle Scholar
  60. E. Stoffels, W.W. Stoffels, K. Tachibana, Rev. Sci. Instrum. 69, 116 (1998) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • Z. W. Liu
    • 1
  • X. F. Yang
    • 1
    • 2
  • A. M. Zhu
    • 1
    • 2
  • G. L. Zhao
    • 1
  • Y. Xu
    • 1
    • 2
    Email author
  1. 1.Laboratory of Plasma Physical Chemistry, P.O. Box 288, Dalian University of TechnologyDalianP.R. China
  2. 2.State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of TechnologyDalianP.R. China

Personalised recommendations