The European Physical Journal D

, Volume 48, Issue 2, pp 197–209 | Cite as

Mitigation of loss within a molecular Stark decelerator

  • B. C. Sawyer
  • B. K. Stuhl
  • B. L. Lev
  • J. Ye
  • E. R. Hudson
Molecular Physics and Chemical Physics

Abstract.

The transverse motion inside a Stark decelerator plays a large role in the total efficiency of deceleration. We differentiate between two separate regimes of molecule loss during the slowing process. The first mechanism involves distributed loss due to coupling of transverse and longitudinal motion, while the second is a result of the rapid decrease of the molecular velocity within the final few stages. In this work, we describe these effects and present means for overcoming them. Solutions based on modified switching time sequences with the existing decelerator geometry lead to a large gain of stable molecules in the intermediate velocity regime, but fail to address the loss at very low final velocities. We propose a new decelerator design, the quadrupole-guiding decelerator, which eliminates distributed loss due to transverse/longitudinal couplings throughout the slowing process and also exhibits gain over normal deceleration to the lowest velocities.

PACS.

37.10.Mn Slowing and cooling of molecules 37.20.+j Atomic and molecular beam sources and techniques 37.90.+j Other topics in mechanical control of atoms, molecules, and ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Avdeenkov, J.L. Bohn, Phys. Rev. A 66, 052718 (2002) CrossRefADSGoogle Scholar
  2. E.R. Hudson et al., Phys. Rev. A 66, 063404 (2006) Google Scholar
  3. D. DeMille, Phys. Rev. Lett. 88, 067901 (2002) CrossRefADSGoogle Scholar
  4. J.D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, J.M. Doyle, Nature 395, 148 (1998) CrossRefADSGoogle Scholar
  5. K.M. Jones et al., Rev. Mod. Phys. 78, 483 (2006) CrossRefADSGoogle Scholar
  6. J.M. Sage, S. Sainis, T. Bergeman, D. Demille, Phys. Rev. Lett. 94, 203001 (2005) CrossRefADSGoogle Scholar
  7. D. Wang et al., Phys. Rev. Lett. 93, 243005 (2004) CrossRefADSGoogle Scholar
  8. C. Ospelkaus et al., Phys. Rev. Lett. 97, 120402 (2006) CrossRefGoogle Scholar
  9. H.L. Bethlem, G. Berden, G. Meijer, Phys. Rev. Lett. 83, 1558 (1999) CrossRefADSGoogle Scholar
  10. S. Hoekstra et al., Phys. Rev. A 76, 063408 (2007) CrossRefADSGoogle Scholar
  11. J.J. Gilijamse et al., J. Chem. Phys. 127, 22102 (2007) Google Scholar
  12. W.C. Campbell et al., Phys. Rev. Lett. 98, 213001 (2007) CrossRefADSGoogle Scholar
  13. O. Bucicov et al., Eur. Phys. J. D 46, 463 (2008) CrossRefADSGoogle Scholar
  14. A. Pe'er et al., Phys. Rev. Lett. 98, 113004 (2007) CrossRefADSGoogle Scholar
  15. Atomic and Molecular Beam Methods, edited by G. Scoles (Oxford University Press, New York, 1988) Google Scholar
  16. S.Y.T. van de Meerakker, private communication Google Scholar
  17. H.L. Bethlem, G. Berden, F.M.H. Crompvoets, R.T. Jongma, A.J.A. van Roij, G. Meijer, Nature 406, 491 (2000) CrossRefADSGoogle Scholar
  18. J.R. Bochinski et al., Phys. Rev. Lett. 91, 243001 (2003) CrossRefADSGoogle Scholar
  19. J.R. Bochinski et al., Phys. Rev. A 70, 043410 (2004) CrossRefADSGoogle Scholar
  20. E.R. Hudson et al., Eur. Phys. J. D 31, 351 (2004) CrossRefADSGoogle Scholar
  21. S.Y.T. van de Meerakker et al., Phys. Rev. Lett. 94, 023004 (2005) CrossRefADSGoogle Scholar
  22. M.R. Tarbutt, H.L. Bethlem, J.J. Hudson, V.L. Ryabov, V.A. Ryzhov, B.E. Sauer, G. Meijer, E.A. Hinds, Phys. Rev. Lett. 92, 173002 (2004) CrossRefADSGoogle Scholar
  23. S.Y.T. van de Meerakker et al., J. Phys. B 39, S1077 (2006) Google Scholar
  24. S. Jung, G. Tiemann, C. Lisdat, Phys. Rev. A 74, 040701(R) (2006) CrossRefADSGoogle Scholar
  25. B.C. Sawyer et al., Phys. Rev. Lett. 98, 253002 (2007) CrossRefADSGoogle Scholar
  26. S.Y.T. van de Meerakker, N. Vanhaecke, H.L. Bethlem, G. Meijer, Phys. Rev. A 73, 023401 (2006) CrossRefADSGoogle Scholar
  27. F.M.H. Crompvoets, H.L. Bethlem, J. Kupper, A.J.A. van Roij, G. Meijer, Phys. Rev. A 69, 063406 (2004) CrossRefADSGoogle Scholar
  28. H. Wiedemann, Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics, 2nd edn. (Springer, Berlin, 2004) Google Scholar
  29. T. Suzuki, Particle Accelerators 18, 115 (1985) Google Scholar
  30. S.Y.T. van de Meerakker, N. Vanhaecke, H.L. Bethlem, G. Meijer, Phys. Rev. A 71, 053409 (2005) CrossRefADSGoogle Scholar
  31. E.R. Hudson et al., Phys. Rev. Lett. 96, 143004 (2006) CrossRefADSGoogle Scholar
  32. B.L. Lev et al., Phys. Rev. A 74, 061402(R) (2006) CrossRefADSGoogle Scholar
  33. J.J. Gilijamse et al., Phys. Rev. A 73, 063410 (2006) CrossRefADSGoogle Scholar
  34. J.J. Gilijamse et al., Science 313, 1617 (2006) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • B. C. Sawyer
    • 1
  • B. K. Stuhl
    • 1
  • B. L. Lev
    • 1
  • J. Ye
    • 1
  • E. R. Hudson
    • 2
  1. 1.JILA, National Institute of Standards and Technology and University of Colorado Department of Physics, University of ColoradoBoulderUSA
  2. 2.Department of PhysicsYale UniversityNew HavenUSA

Personalised recommendations