The European Physical Journal D

, Volume 48, Issue 1, pp 67–74 | Cite as

Calculation by plane wave Born approximations of electron-impact ionization of silver and copper

  • A. Yu. ElizarovEmail author
  • I. I. Tupitsyn
Atomic and Molecular Collisions


The plane wave Born approximation is used to calculate total electron impact ionization cross section of silver and copper. Wavefunctions of the target and residual ions were modeled by non orthogonal Hartree-Fock and Dirac-Fock orbitals. The wave functions of the atom and residual ion are calculated with allowance for relaxation effects. The one-electron wavefunction of the continuous spectrum for the ejected electron is obtained using single-configuration Hartree-Fock and Dirac-Fock method. The orthogonalization of the ejected electron wave functions to all occupied orbitals of the target atom is performed. Results of calculations are compared to available experimental measurements and theoretical calculations performed by non relativistic one-electron PWBA, where the ejected electrons is modeled by the hydrogenic Coulomb wave function.


34.80.-i Electron scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. Peach, J. Phys. B: At. Mol. Phys. 4, 1670 (1971) CrossRefADSGoogle Scholar
  2. E. Clementi, C. Roetti, At. Data Nucl. Data Tab. 14, 177 (1974) CrossRefADSGoogle Scholar
  3. P.L. Bartlett, A.T. Stelbovics, Phys. Rev. A 66, 012707 (2002 Google Scholar
  4. P.L. Bartlett, A.T. Stelbovics, At. Data Nucl. Data Tab. 86, 235 (2004) CrossRefADSGoogle Scholar
  5. D.W. Chang, P.L. Altick, J. Phys. B: At. Mol. Opt. Phys. 28, 1049 (1995) CrossRefADSGoogle Scholar
  6. A.Yu. Elizarov, I.I. Tupitsyn, J. Phys. B: At. Mol. Opt. Phys. 39, 1395 (2006) CrossRefADSGoogle Scholar
  7. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Non-Relativistic Theory) (Pergamon, London, 1965), p. 609 Google Scholar
  8. R.K. Peterkop, Theory of ionization of atoms by electron impact (Zinatne, Riga, 1975), p. 190 (in Russian) Google Scholar
  9. M.E. Rose, Relativistic electron theory (J. Wiley & Sons, NY, 1961), p. 291 Google Scholar
  10. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988) Google Scholar
  11. A.Yu. Elizarov, I.I. Tupitsyn, J. Phys. B: At. Mol. Opt. Phys. 39, 4329 (2006) CrossRefADSGoogle Scholar
  12. M.R.H. Rudge, Rev. Mod. Phys. 40, 564 (1968) CrossRefADSGoogle Scholar
  13. A.Yu. Elizarov, I.I. Tupitsyn, Physica Scripta 70, 139 (2004) CrossRefADSGoogle Scholar
  14. R.S. Freund, R.C. Wetzel, R.J. Shul, T.R. Hayes, Phys. Rev. A 41, 3575 (1990) CrossRefADSMathSciNetGoogle Scholar
  15. M.A. Bolorizadeh, C.J. Patton, M.B. Shah, H.B. Gilbody, J. Phys. B: At. Mol. Opt. Phys. 27, 175 (1994) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.A.F. Ioffe Physico-Technical InstituteSt. PetersburgRussia
  2. 2.St.-Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations