The European Physical Journal D

, Volume 48, Issue 1, pp 35–41 | Cite as

86-km optical link with a resolution of 2 × 10-18 for RF frequency transfer

  • O. Lopez
  • A. Amy-Klein
  • C. Daussy
  • C. Chardonnet
  • F. Narbonneau
  • M. Lours
  • G. Santarelli
Topical issue: Metrology and optical frequency combs

Abstract.

RF frequency transfer over an urban 86 km fibre has been demonstrated with a resolution of 2×10-18 at one day measuring time using an optical compensator. This result is obtained with a reference carrier frequency of 1 GHz, and a rapid scrambling of the polarisation state of the input light in order to reduce the sensitivity to the polarisation mode dispersion in the fibre. The limitation due to the fibre chromatic dispersion associated with the laser frequency fluctuations is highlighted and analyzed. A preliminary test of an extended compensated link over 186 km using optical amplifiers gives a resolution below 10-17 at 1 day.

PACS.

42.62.Eh Metrological applications; optical frequency synthesizers for precision spectroscopy 06.30.Ft Time and frequency 42.81.Uv Fiber networks 42.81.Gs Birefringence, polarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Vian et al., IEEE Trans. Instrum. Meas. 54, 833 (2005) CrossRefGoogle Scholar
  2. R. Le Targat et al., Phys. Rev. Lett. 97, 130801 (2006) CrossRefGoogle Scholar
  3. M.M. Boyd et al., Phys. Rev. Lett. 98, 083002 (2007) CrossRefADSGoogle Scholar
  4. W.H. Oskay et al., Phys. Rev. Lett. 97, 020801 (2006) CrossRefGoogle Scholar
  5. S.T. Cundiff, J. Ye, J.L. Hall, Rev. Sci. Instrum. 72, 3749 (2001) CrossRefADSGoogle Scholar
  6. S.G. Karshenboim, Can. J. Phys. 83, 767 (2005) CrossRefADSGoogle Scholar
  7. V.V. Flambaum, Phys. Rev. D 69, 115006 (2004) CrossRefADSMathSciNetGoogle Scholar
  8. B. Shillue, ALMA Memo No. 443 (2002), http://www.alma.nrao.edu/memos/ Google Scholar
  9. M. Musha et al., Appl. Phys. B 82, 555 (2006) CrossRefADSGoogle Scholar
  10. R.T. Logan, G.F. Lutes, Proc. of IEEE Frequency Control Symposium 310 (1992) Google Scholar
  11. M. Calhoun, S. Huang, R.L. Tjoelker, Proceedings of the IEEE, Special Issue on Technical Advances in Deep Space Communications & Tracking 95 (2007) Google Scholar
  12. K. Sato et al., IEEE Trans. Instrum. Meas. 49, 19 (2000) CrossRefGoogle Scholar
  13. S. Foreman et al., Rev. Sci. Instrum. 78, 021101 (2007) CrossRefADSGoogle Scholar
  14. F. Narbonneau et al., Rev. Sci. Instrum. 77, 064701 (2006) CrossRefADSGoogle Scholar
  15. C. Daussy et al., Phys. Rev. Lett. 94, 203904 (2005) CrossRefADSGoogle Scholar
  16. N.R. Newbury, P.A. Williams, W.C. Swann, Opt. Lett. 32, 3056 (2007) CrossRefGoogle Scholar
  17. S.M. Foreman et al., Phys. Rev. Lett. 99, 153601 (2007) CrossRefADSGoogle Scholar
  18. G. Grosche et al., CLEO Report No. CMKK1 (2007) Google Scholar
  19. A. Amy-Klein et al., Appl. Phys. B 78, 25 (2004) CrossRefADSGoogle Scholar
  20. M.I. Joindot, Les Télécommunications par fibres optiques (Dunod and CNET-ENST, Paris, 1996) Google Scholar
  21. R. Noe, H. Heidrich, D. Hoffmann, J. Lightwave Technol. 6, 1199 (1988) CrossRefADSGoogle Scholar
  22. G.J. Meslener, IEEE J. Quant. Electr. QE-20, 1208 (1984) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • O. Lopez
    • 1
  • A. Amy-Klein
    • 1
  • C. Daussy
    • 1
  • C. Chardonnet
    • 1
  • F. Narbonneau
    • 2
  • M. Lours
    • 2
  • G. Santarelli
    • 2
  1. 1.Laboratoire de Physique des Lasers, UMR 7538 CNRS, Université Paris 13VilletaneuseFrance
  2. 2.LNE-SYRTE, UMR 8630 CNRSParisFrance

Personalised recommendations