The European Physical Journal D

, Volume 47, Issue 1, pp 151–156 | Cite as

Quantum phase estimation algorithm in presence of static imperfections

  • I. García-Mata
  • D. L. Shepelyansky
Highlight Paper


We study numerically the effects of static imperfections and residual couplings between qubits for the quantum phase estimation algorithm with two qubits. We show that the success probability of the algorithm is affected significantly more by static imperfections than by random noise errors in quantum gates. An improvement of the algorithm accuracy can be reached by application of the Pauli-random-error-correction method (PAREC).


03.67.Lx Quantum computation 85.25.Cp Josephson devices 24.10.Cn Many-body theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge Univ. Press, Cambridge, 2000) Google Scholar
  2. H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. hwalla, T. Krber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643 (2005) CrossRefADSGoogle Scholar
  3. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 285 (2002) CrossRefGoogle Scholar
  4. J.H. Plantenberg, P.C. de Groot, C.J.P.M. Harmans, J.E. Mooij, Nature 447, 836 (2007) CrossRefADSGoogle Scholar
  5. J. Majer, J.M. Cow, J.M. Gambetta, J. Koch, B.R. Johnson, J.A. Schreier, L. Frunzio, D.I. Schuster, A.A. Houck, A. Wallraff, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Nature 449, 443 (2007) CrossRefADSGoogle Scholar
  6. M. Dobšíček, G. Johansson, V. Shumeiko, G. Wendin, Phys. Rev. A 76, 030306(R) (2007) CrossRefADSGoogle Scholar
  7. R.B. Griffiths, C.-S. Niu, Phys. Rev. Lett. 76, 3228 (1996) CrossRefADSGoogle Scholar
  8. A. Yu. Kitaev, e-print:arXiv:quant-ph/9511026 (2005) Google Scholar
  9. R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, Proc. Roy. Soc. A 454, 339 (1998) zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 3504 (2000); B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 6366 (2000) CrossRefADSGoogle Scholar
  11. G. Benenti, G. Casati, S. Montangero, D.L. Shepelyansky, Phys. Rev. Lett. 87, 227901 (2001) CrossRefADSGoogle Scholar
  12. K.M. Frahm, R. Fleckinger, D.L. Shepelyansky, Eur. Phys. J. D 29, 139 (2004) CrossRefADSGoogle Scholar
  13. O. Kern, G. Alber, D.L. Shepelyansky, Eur. Phys. J. D 32, 153 (2005) CrossRefADSGoogle Scholar
  14. O. Kern, G. Alber, Phys. Rev. Lett. 95, 250501 (2005) CrossRefADSGoogle Scholar
  15. L. Viola, L.F. Santos, J. Mod. Opt. 53, 2559 (2006) zbMATHCrossRefGoogle Scholar
  16. Edited by D.M.S. Bagguley, Pulsed Magnetic Resonance: NMR, ESR, Optics: A recognition of E.L.Hahn, (Oxford Univ. Press, 1992) Google Scholar
  17. T. Prosen, M. Žnidarič, J. Phys. A 34, L681 (2001) Google Scholar
  18. B. Misra, E.C.G. Sudarshan, J. Math. Phys. 18, 756 (1977); Wayne M. Itano, D.J. Heinzen, J.J. Bollinger, D.J. Wineland, Phys. Rev. A 41, 2295 (1990); P. Facchi, S. Pascazio, Phys. Rev. Lett. 89, 080401 (2002) CrossRefADSGoogle Scholar
  19. Edited by K.M. Frahm, D.L. Shepelyansky, Quantware Library: Quantum Numerical Recipes, Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • I. García-Mata
    • 1
  • D. L. Shepelyansky
    • 1
  1. 1.Laboratoire de Physique Théorique, Université de Toulouse III, CNRSToulouseFrance

Personalised recommendations