Advertisement

Plasma screening within Rydberg atoms in circular states

  • M. R. Flannery
  • E. OksEmail author
Atomic Physics

Abstract.

A Rydberg atom embedded in a plasma can experience penetration by slowly moving electrons within its volume. The original pure Coulomb potential must now be replaced by a screened Coulomb potential which contains either a screening length Rs or a screening factor A = Rs -1 . For any given discrete energy level, there is a Critical Screening Factor (CSF) Ac beyond which the energy level disappears (by merging into the continuum). Analytical results are obtained for the classical dependence of the energy on the screening factor, for the CSF, and for the critical radius of the electron orbit for Circular Rydberg States (CRS) in this screened Rydberg atom. The results are derived for any general form of the screened Coulomb potential and are applied to the particular case of the Debye potential. We also show that CRS can temporarily exist above the ionization threshold and are therefore the classical counterparts of quantal discrete states embedded into continuum. The results are significant not only to Rydberg plasmas, but also to fusion plasmas, where Rydberg states of multi-charged hydrogen-like ions result from charge exchange with hydrogen or deuterium atoms, as well as to dusty/complex plasmas.

PACS.

34.60.+z Scattering in highly excited states (e.g., Rydberg states) 31.70.-f Effects of atomic and molecular interactions on electronic structure 31.50.Df Potential energy surfaces for excited electronic states 

References

  1. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1965) Google Scholar
  2. M.P. Robinson, B.L. Tolra, M.W. Noel, T.F. Galagher, P. Pillet, Phys. Rev. Lett. 85, 4466 (2000) CrossRefADSGoogle Scholar
  3. T.C. Killian, M.J. Lim, S. Kulin, R. Dumke, S.D. Bergeson, S.L. Rolston, Phys. Rev. Lett. 86, 3759 (2001) CrossRefADSGoogle Scholar
  4. T.C. Killian, S. Kulin, S.D. Bergeson, L.A. Orozco, C. Orzel, S.L. Rolston, Phys. Rev. Lett. 83, 4776 (1999) CrossRefADSGoogle Scholar
  5. M.R. Flannery, D. Vrinceanu, in Atomic Processes in Plasmas: 11th APS Topical Conf., edited by E. Oks, M. Pindzola (AIP Press, New York, 1998), p. 317 Google Scholar
  6. D. Vrinceanu, M.R. Flannery, Phys. Rev. Lett. 85, 4880 (2000) CrossRefADSMathSciNetGoogle Scholar
  7. D. Vrinceanu, M.R. Flannery, Phys. Rev. 63, 032701 (2001) CrossRefADSGoogle Scholar
  8. D. Vrinceanu, M.R. Flannery, J. Phys. B 34, L1 (2001) Google Scholar
  9. M.R. Flannery, D. Vrinceanu, Int. J. Mass Spectrom. 223, 473 (2003) CrossRefGoogle Scholar
  10. M.R. Flannery, D. Vrinceanu, Phys. Rev. A 68, 030502(R) (2003) CrossRefADSGoogle Scholar
  11. M.R. Flannery, D. Vrinceanu, V.N. Ostrovsky, J. Phys. B 38, S279 (2005) Google Scholar
  12. S.K. Dutta, D. Feldbaum, A. Walz-Flannigan, J.R. Guest, G. Raithel, Phys. Rev. Lett. 86, 3993 (2001) CrossRefADSGoogle Scholar
  13. R.G. Hulet, E.S. Hilfer, D. Kleppner, Phys. Rev. Lett. 55, 2137 (1985) CrossRefADSGoogle Scholar
  14. K.B. MacAdam, E. Horsdal-Petersen, J. Phys. B 36, R167 (2003) Google Scholar
  15. D. Ray, T.K. Roy, Eur. Phys. J. D 10, 189 (2000) CrossRefADSGoogle Scholar
  16. C.R. Smith, Phys. Rev. A 134, 1235 (1964) CrossRefADSGoogle Scholar
  17. N. Bessis, G. Bessis, G. Gorbel, B. Dakhel, J. Chem. Phys. 63, 3744 (1975) CrossRefADSGoogle Scholar
  18. F.J. Rogers, H.C. Graboske, D.J. Harwood, Phys. Rev. A 1, 1577 (1970) CrossRefADSGoogle Scholar
  19. D. Salzmann, Atomic Physics in Hot Plasmas (Oxford Univ. Press, New York, 1998) Google Scholar
  20. E. Lee, D. Farrelly, T. Uzer, Opt. Express 1, 221 (1997) ADSCrossRefGoogle Scholar
  21. T.C. Germann, D.R. Herschbach, M. Dunn, D.K. Watson, Phys. Rev. Lett. 74, 658 (1995) CrossRefADSGoogle Scholar
  22. C.H. Cheng, C.Y. Lee, T.F. Gallagher, Phys. Rev. Lett. 73, 3078 (1994) CrossRefADSGoogle Scholar
  23. L. Chen, M. Cheret, F. Roussel, G. Spiess, J. Phys. B 26, L437 (1993) Google Scholar
  24. V.M. Vainberg, V.S. Popov, A.V. Sergeev, Sov. Phys. JETP 71, 470 (1990) Google Scholar
  25. E. Oks, Phys. Rev. Lett. 85, 2084 (2000) CrossRefADSGoogle Scholar
  26. E. Oks, J. Phys. B 33, 3319 (2000) CrossRefADSGoogle Scholar
  27. E. Oks, Eur. Phys. J. D 28, 171 (2004) CrossRefADSGoogle Scholar
  28. G.M. Harris, Phys. Rev. 125, 1131 (1962) CrossRefADSGoogle Scholar
  29. S.A. Khrapak, A.V. Ivlev, G.E. Morfill, S.K. Zhdanov, Phys. Rev. Lett. 90, 225002 (2003) CrossRefADSGoogle Scholar
  30. M.D. Kilgore, J.E. Daugherty, R.K. Porteous, D.B. Graves, J. Appl. Phys. 73, 7195 (1993) CrossRefADSGoogle Scholar
  31. J.E. Daugherty, R.K. Porteous, M.D. Kilgore, D.B. Graves, J. Appl. Phys. 72, 3934 (1992) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of Physics, Georgia Institute of TechnologyAtlantaUSA
  2. 2.Physics Department, 206 Allison Lab.Auburn UniversityAuburnUSA

Personalised recommendations