The European Physical Journal D

, Volume 47, Issue 3, pp 359–365 | Cite as

Structural and electronic properties of Bin (n = 2-14) clusters from density-functional calculations

Clusters and Nanostructures

Abstract.

The structural and electronic properties of Bin (n = 2-14) clusters have been systematically studied using gradient-corrected density-functional theory. For each cluster size, a number of structural isomers were constructed and optimized to search for the lowest-energy structure. The competition of several structural patterns such as cages, superclusters, and layered structures leads to the alternating appearance of these configurations as global minima. Although the tendency of Bi to form puckered-layer structures is already well-known, the electronic states of Bin clusters are still far from that of the bulk. As well, a remarkable even-odd atom number oscillation is observed in the structural and electronic properties of the clusters, implying that the stability of Bin clusters is mainly dominated by the electron shell effect rather than by geometrical packing. The theoretically calculated values for electron affinities agree well with available experimental data.

PACS.

61.46.-w Nanoscale materials 36.40.Mr Spectroscopy and geometrical structure of clusters 36.40.Cg Electronic and magnetic properties of clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.S. Dresselhaus, Y.M. Lin, O. Rabin, A. Jorio, A.G.S. Filho, M.A. Pimenta, R. Saito, G.G. Samsonidze, G. Dresselhaus, Mater. Sci. Eng. C 23, 129 (2003) CrossRefGoogle Scholar
  2. M. Ferhat, A. Zaoui, Phys. Rev. B 73, 115107 (2006) CrossRefADSGoogle Scholar
  3. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E.C. Young, T. Tiedje, Phys. Rev. Lett. 97, 067205 (2006) CrossRefADSGoogle Scholar
  4. M.E. Geusic, R.R. Freeman, M.A. Duncan, J. Chem. Phys. 89, 223 (1988) CrossRefADSGoogle Scholar
  5. M.E. Geusic, R.R. Freeman, M.A. Duncan, J. Chem. Phys. 88, 163 (1988) CrossRefADSGoogle Scholar
  6. L.S. Wang, Y.T. Lee, D.A. Shirley, K. Balsdulbramanian, P. Feng, J. Chem. Phys. 93, 6310 (1990) CrossRefADSGoogle Scholar
  7. M.L. Polak, J. Ho, G. Gerber, W.C. Lineberger, J. Chem. Phys. 95, 3053 (1991) CrossRefADSGoogle Scholar
  8. M.L. Polak, G. Gerber, J. Ho, W.C. Lineberger, J. Chem. Phys. 97, 8990 (1992) CrossRefADSGoogle Scholar
  9. M. Gausa, R. Kaschner, G. Seifert, F.H. Faehrmann, H.O. Lutz, K.-H. Meiwes-Broer, J. Chem. Phys. 104, 9719 (1996) CrossRefADSGoogle Scholar
  10. T. Hihara, S. Pokrant, J.A. Becker, Chem. Phys. Lett. 294, 357 (1998) CrossRefADSGoogle Scholar
  11. S. Yin, X. Xu, R. Moro, W.A. de Heer, Phys. Rev. B 72, 174410 (2005) CrossRefADSGoogle Scholar
  12. K. Balasubramanian, J. Li, J. Mol. Spectrosc. 135, 169 (1989) CrossRefADSGoogle Scholar
  13. K. Balasubramanian, Chem. Rev. 90, 93 (1990) CrossRefGoogle Scholar
  14. K. Balasubramanian, D.W. Liao, J. Chem. Phys. 95, 3064 (1991) CrossRefADSGoogle Scholar
  15. K. Balasubramanian, K. Sumathi, D. Dai, J. Chem. Phys. 95, 3494 (1991) CrossRefADSGoogle Scholar
  16. H. Zhang, K. Balasubramanian, J. Chem. Phys. 97, 3437 (1992) CrossRefADSGoogle Scholar
  17. D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995) CrossRefADSGoogle Scholar
  18. F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005) CrossRefADSGoogle Scholar
  19. F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985) CrossRefADSGoogle Scholar
  20. Z.Q. Wang, D. Stroud, Phys. Rev. B 42, 5353 (1990) CrossRefADSGoogle Scholar
  21. S. Yoo, J.J. Zhao, J.L. Wang, X.C. Zeng, J. Am. Chem. Soc. 126, 13845 (2004) CrossRefGoogle Scholar
  22. B.L. Wang, J.J Zhao, X.S. Chen, D.N. Shi, G.H. Wang, Phys. Rev. A 71, 033201 (2005) CrossRefADSGoogle Scholar
  23. R.O. Jones, D. Hohl, J. Chem. Phys. 92, 6710 (1990) CrossRefADSGoogle Scholar
  24. R.O. Jones, G. Seifert, J. Chem. Phys. 96, 7564 (1992) CrossRefADSGoogle Scholar
  25. M. Haser, U. Schneider, R. Ahlrichs, J. Am. Chem. Soc. 114, 9551 (1992) CrossRefGoogle Scholar
  26. M. Haser, O. Treutler, J. Chem. Phys. 102, 3703 (1995) CrossRefADSGoogle Scholar
  27. K. Balasubramanian, K. Sumathi, D. Dai, J. Chem. Phys. 95, 3494 (1991) CrossRefADSGoogle Scholar
  28. U. Meier, S.D. Peyerimhoff, F. Grein, Chem. Phys. 150, 331 (1991) CrossRefADSGoogle Scholar
  29. J.J. BelBruno, Heteroat. Chem. 14, 189 (2003) CrossRefGoogle Scholar
  30. Y. Zhao, W. Xu, Q. Li, Y. Xie, H.F. Schaefer III, J. Comp. Chem. 25, 907 (2004) CrossRefGoogle Scholar
  31. G. Igel-Mann, H. Stoll, H. Preuss, Molec. Phys. 80, 325 (1993) CrossRefGoogle Scholar
  32. D.S. Warren, B.M. Gimarc, M. Zhao, Inorg. Chem. 33, 710 (1994) CrossRefGoogle Scholar
  33. P. Ballone, R.O. Jones, J. Chem. Phys. 100, 4941 (1994) CrossRefADSGoogle Scholar
  34. M. Shen, H.F. Schaefer III, J. Chem. Phys. 101, 2261 (1994) CrossRefADSGoogle Scholar
  35. J.J. Zhao, X.L . Zhou, X.S. Chen, J.L. Wang, J. Jellinek, Phys. Rev. B 73, 115418 (2006) CrossRefADSGoogle Scholar
  36. X.L. Zhou, J.J. Zhao, X.S. Chen, W. Lu, Phys. Rev. A 72, 053203 (2005) CrossRefADSGoogle Scholar
  37. DMol is a density functional theory (DFT) package based atomic basis distributed by Accelrys. B. Delley, J. Chem. Phys. 92, 508 (1990); B. Delley, J. Chem. Phys. 113, 7756 (2000) CrossRefADSGoogle Scholar
  38. D.R. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979) CrossRefADSGoogle Scholar
  39. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  40. V.E. Bondybey, J.H. English, J. Chem. Phys. 73, 42 (1980) CrossRefADSGoogle Scholar
  41. K. Manzel, U. Engelhardt, H. Abe, W. Schulze, F.W. Froben, Chem. Phys. Lett. 77, 514 (1981) CrossRefADSGoogle Scholar
  42. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Pergamon, Oxford, 1984) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • J. M. Jia
    • 1
    • 2
  • G. B. Chen
    • 1
  • D. N. Shi
    • 2
  • B. L. Wang
    • 2
    • 3
    • 4
  1. 1.Department of PhysicsJiangsuP.R. China
  2. 2.Department of PhysicsNanjing University of Aeronautics and AstronauticsNanjingP.R. China
  3. 3.Department of PhysicsNanjing UniversityNanjingP.R. China
  4. 4.Department of PhysicsHuaiyin Institute of TechnologyJiangsuP.R. China

Personalised recommendations