Advertisement

The European Physical Journal D

, Volume 47, Issue 1, pp 63–70 | Cite as

Dynamical study of the Cs+(1S0)+Mg(3 1S0) non adiabatic collision system in the few keV energy range

  • M. Sabidó
  • J. de Andrés
  • J. Sogas
  • J. M. Lucas
  • M. Albertí
  • J. M. Bofill
  • I. Rabadán
  • A. AguilarEmail author
Atomic and Molecular Collisions

Abstract.

The dynamics of collisional processes between Mg atoms and caesium ions is studied using the hemiquantal (HQ) approach with special attention to the collisional channels leading to Mg(3 1P) and Cs(6 2P) states, for which the corresponding emission excitation functions have been previously measured in our laboratory. The radial and angular non-adiabatic couplings between the manifold of quasimolecular states have been determined using an ab initio configuration interaction calculation. The cross-sections for the different channels, as a function of the laboratory collisional energy, are compared with experimental values. The dynamical calculations indicate that, for the inelastic processes considered, the range of relevant impact parameters is small, active collisions being of the head-on type. .

PACS.

34.50.-s Scattering of atoms and molecules 31.50.Gh Surface crossings, non-adiabatic couplings 31.15.Ar Ab initio calculations 34.20.-b Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Rees, in Physics and Chemistry of the Upper Atmosphere (Cambridge University Press, Cambridge, 1999), p. 90 Google Scholar
  2. D. Böhme, H. Schwarz, Angew. Chem. Int. 44, 2336 (2005) CrossRefGoogle Scholar
  3. T. Fujii, Mass. Spectrom. Rev. 19, 111 (2000) CrossRefGoogle Scholar
  4. M. Sabidó, J.M. Lucas, J. de Andrés, J. Sogas, M. Albertí, A. Aguilar, D. Bassi, D. Ascenzi, P. Franceschi, P. Tosi, F. Pirani, Chem. Phys. Lett. 442, 28 (2007) CrossRefADSGoogle Scholar
  5. D.L. Lambert, Phys. Scr. T 47, 186 (1993) CrossRefADSGoogle Scholar
  6. J. Sogas, M.E. Aricha, J. de Andrés, M. Albertí, J.M. Lucas, A. Aguilar, Phys. Chem. Chem. Phys. 3, 3638 (2001), and references cited therein CrossRefGoogle Scholar
  7. J. Sogas, M. Sabidó, J. de Andrés, J.M. Lucas, M. Albertí, A. Aguilar, Chem. Phys. Lett. 425, 234 (2006) CrossRefADSGoogle Scholar
  8. M. Sabidó, J. de Andrés, J. Sogas, J.M. Lucas, M. Albertí, J.M. Bofill, A. Aguilar, J. Chem. Phys. 121, 5284 (2004) CrossRefADSGoogle Scholar
  9. M. Sabidó, J. de Andrés, J. Sogas, J.M. Lucas, M. Albertí, J.M. Bofill, A. Aguilar, J. Chem. Phys. 123, 124314 (2005) CrossRefADSGoogle Scholar
  10. M. Sabidó, J. de Andrés, J. Sogas, J.M. Lucas, M. Albertí, J.M. Bofill, A. Aguilar, Phys. Chem. Chem. Phys. 7, 310 (2005) CrossRefGoogle Scholar
  11. M.J. Coggiola, Y.K. Bae, J.R. Peterson, Phys. Rev. A 32, 784 (1985) CrossRefADSGoogle Scholar
  12. M. Kimura, H. Sato, R.E. Olson, Phys. Rev. A 28, 2085 (1983) CrossRefADSGoogle Scholar
  13. A.R. Turner-Smith, J.M. Green, C.E. Webb, J. Phys. B 6, 114 (1973), and references cited therein CrossRefADSGoogle Scholar
  14. V. Aquilanti, P. Casavecchia, G. Grossi, J. Chem. Phys. 68, 1499 (1978) CrossRefADSGoogle Scholar
  15. V. Aquilanti, P. Casavecchia, G. Grossi, J. Chem. Phys. 71, 3546 (1979) CrossRefADSGoogle Scholar
  16. X.L. Chen, H.M. Chen, J. Li, Y.M. Liu, X.C. Dai, G.H. Sha, J.C. Xie, C.H. Zhang, Li. Li, Chem. Phys. Lett. 318, 107 (2000), and references cited therein CrossRefADSGoogle Scholar
  17. J. Sogas, M. Sabidó, J. de Andrés, J.M. Lucas, M. Albertí, A. Aguilar, Chem. Phys. Lett. 425, 234 (2006) CrossRefADSGoogle Scholar
  18. E.E. Nikitin, Theory of Chemical Elementary Processes in Gases (Springer, Heidelberg, 1978) Google Scholar
  19. J. de Andrés, M. Sabidó, M.E. Aricha, M. Albertí, J.M. Lucas, F.X. Gadea, A. Aguilar, Chem. Phys. 281, 33 (2002) CrossRefADSGoogle Scholar
  20. L.L. Halcomb, D.J. Diestler, J. Chem. Phys. 84, 3130 (1986) CrossRefADSGoogle Scholar
  21. Ph. Durand, J.P. Malrieu, Adv. Chem. Phys. 67, 321 (1987) CrossRefGoogle Scholar
  22. B.H. Bransden, Atomic Collision Theory, 2nd edn. (The Bejamin/Cummings Publishing Company, London, 1983) Google Scholar
  23. E.R. Davidson, in MOTECC, Modern Techniques in Computational Chemistry, edited by E. Clementi (ESCOM Publishers B.V., Leiden, 1990) Google Scholar
  24. J.F. Castillo, L.F. Errea, A. Macías, L. Méndez, A. Riera, J. Chem. Phys. 103, 2113 (1995) CrossRefADSGoogle Scholar
  25. L.F. Errea, L. Fernández, A. Macías, L. Méndez, I. Rabadán, A. Riera, J. Chem. Phys. 121, 1663 (2004) CrossRefADSGoogle Scholar
  26. M.E. Aricha, Master thesis, Universitat de Barcelona, 1999 Google Scholar
  27. National Bureau of Standards from the Handbook of Chemisty and Physics, edited by J. Reader, C.H. Corliss, D.R. Lide, 77th edn. (1996-1997) Google Scholar
  28. R.E. Olson, Phys. Rev. A 6, 1822 (1972) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • M. Sabidó
    • 1
  • J. de Andrés
    • 1
  • J. Sogas
    • 1
  • J. M. Lucas
    • 1
  • M. Albertí
    • 1
  • J. M. Bofill
    • 2
  • I. Rabadán
    • 3
  • A. Aguilar
    • 1
    Email author
  1. 1.Departament de Química Física, IRQT/Parc Científic de BarcelonaUniversitat de Barcelona BarcelonaSpain
  2. 2.Departament de Química Orgànica, IRQT/Parc Científic de BarcelonaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Laboratorio Asociado al CIEMAT de Física Atómica y Molecular en Plasmas de Fusión, Departamento de QuímicaUniversidad Autónoma de Madrid. 28049 MadridMadridSpain

Personalised recommendations