Advertisement

The European Physical Journal D

, Volume 47, Issue 2, pp 191–196 | Cite as

Measurements of electron density and Stark width of neutral helium lines in a helium arc plasma

  • H. M. Gao
  • S. L. MaEmail author
  • C. M. Xu
  • L. Wu
Plasma Physics

Abstract.

Electron densities in an atmospheric helium arc plasma have been measured with the Stark broadening parameters of helium spectral lines. The spatially distributed radiation intensities are converted to plasma emission coefficients at every wavelength by means of Abel inversion. From the inverted profiles of He I lines of 4713 Å, 5016 Å, and 6678 Å electron density has been calculated, which ranges from 0.5 ×1016 to 4 ×1016 cm-3 for a helium arc with current 200 A. Stark widths of He I lines of 3889 Å and 7065 Å are determined based on the measurements and compared with existing data.

PACS.

52.70.-m Plasma diagnostic techniques and instrumentation 52.70.Kz Optical (ultraviolet, visible, infrared) measurements 32.70.Jz Line shapes, widths, and shifts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.N. Haddad, A.J.D. Farmer, J. Phys. D 17, 1189 (1984) CrossRefADSGoogle Scholar
  2. M.F. Thornton, J. Phys. D 26, 1432 (1993) CrossRefADSGoogle Scholar
  3. C.M. Xu, H.M. Gao, L. Wu, IEEE Trans. Plasma Sci. 33, 304 (2005) CrossRefADSGoogle Scholar
  4. J. Zawodny, Weld. J. 80, 49 (2001) Google Scholar
  5. J. Jonkers, J. van der Mullen, J. Quant. Spectrosc. Radiat. Transfer 61, 703 (1999) CrossRefADSGoogle Scholar
  6. J. Jonkers, M. van de Sande, A. Sola, A. Gamero, J. van der Mullen, Plasma Sources Sci. Technol. 12, 30 (2003) CrossRefADSGoogle Scholar
  7. J. Zijp, K. Hiraoka, Q.J. Jpn. Weld. Soc. 12, 21 (1994) Google Scholar
  8. W. Kohsiek, Plasma Phys. 17, 1083 (1975) CrossRefADSGoogle Scholar
  9. T. Wujec, J. Musielok, Acta Phys. Pol. A 95, 221 (1999) Google Scholar
  10. R. Álvarez, A. Rodero, M.C. Quintero, Spectrochim. Acta B 57, 1665 (2002) CrossRefADSGoogle Scholar
  11. R. Álvarez, M.C. Quintero, A. Rodero, Spectrochim. Acta B 59, 709 (2004) CrossRefADSGoogle Scholar
  12. C. Pérez, I. de la Rosa, A.M. de Frutos, S. Mar, Phys. Rev. A 44, 6785 (1991) CrossRefADSGoogle Scholar
  13. C. Pérez, J.A. Aparicio, I. de la Rosa, S. Mar, M.A. Gigosos, Phys. Rev. E 51, 3764 (1995) CrossRefADSGoogle Scholar
  14. C. Pérez, R. Santamarta, I. de la Rosa, S. Mar, Eur. Phys. J. D 27, 73 (2003) CrossRefADSGoogle Scholar
  15. J.C. Valognes, J.P. Bardet, J. Quant. Spectrosc. Radiat. Transfer 56, 855 (1996) CrossRefADSGoogle Scholar
  16. J.P. Bardet, J.C. Valognes, Y. Vitel, J. Quant. Spectrosc. Radiat. Transfer 65, 853 (2000) CrossRefADSGoogle Scholar
  17. J.P. Bardet, J.C. Valognes, Y. Vitel, J. Quant. Spectrosc. Radiat. Transfer 76, 45 (2003) CrossRefADSGoogle Scholar
  18. H. Terasaki, M. Tanaka, M. Ushio, Trans. JWRI 31, 13 (2002) Google Scholar
  19. H.R. Griem, Spectral Line Broadening by Plasma (Academic Press, New York, 1974) Google Scholar
  20. M.A. Mazing, V.A. Slemzin, Sov. Phys. Lebedev Inst. Rep. 4, 42 (1973) Google Scholar
  21. Z. Mijatovi c ć, N. Konjevi c ć, M. Ivkovi c ć, R. Kobilarov, Phys. Rev. E 51, 4891 (1995) CrossRefADSGoogle Scholar
  22. V. Milosavljevíc, S. Djeniže, Eur. Phys. J. D 23, 385 (2003) CrossRefADSGoogle Scholar
  23. H. Wulff, Z. Phys. 150, 614 (1958) CrossRefADSGoogle Scholar
  24. H.J. Kusch, Z. Naturforsch. A 26, 1970 (1971) ADSGoogle Scholar
  25. R. Kobilarov, N. Konjevi c ć, M.V. Popovi c ć, Phys. Rev. A 40, 3871 (1989) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of TechnologyHarbinP.R. China

Personalised recommendations