The European Physical Journal D

, Volume 48, Issue 1, pp 43–55 | Cite as

Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

  • E. E. Eyler
  • D. E. Chieda
  • M. C. Stowe
  • M. J. Thorpe
  • T. R. Schibli
  • J. Ye
Topical issue: Metrology and optical frequency combs

Abstract.

We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 23S state atoms. We analyze schemes for measuring the two-photon 23S →43S interval, and for resonant two-photon excitation to high Rydberg states, 23S →33P →n3S, D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 11S or 21S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 11S →21S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a “triple magic wavelength” at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 11S, 21S and 23S states are all similar, small, and positive.

PACS.

42.62.Fi Laser spectroscopy 42.62.Eh Metrological applications 39.25.+k Atom manipulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.C. Morton, Q.X. Wu, G.W.F. Drake, Can. J. Phys. 84, 83 (2006) CrossRefADSGoogle Scholar
  2. J. Castillega, D. Livingston, A. Sanders, D. Shiner, Phys. Rev. Lett. 84, 4321 (2000) CrossRefADSGoogle Scholar
  3. C.H. Storry, M.C. George, E.A. Hessels, Phys. Rev. Lett. 84, 3274 (2000) CrossRefADSGoogle Scholar
  4. M.C. George, L.D. Lombardi, E.A. Hessels, Phys. Rev. Lett. 87, 173002 (2001) CrossRefADSGoogle Scholar
  5. G. Giusfredi, P. de Natale, D. Mazzotti, P.C. Pastor, C. de Maruo, L. Fallani, G. Hagel, V. Krachmalnicoff, M. Inguscio, Can. J. Phys. 83, 301 (2005) CrossRefADSGoogle Scholar
  6. T. Zelevinsky, D. Farkas, G. Gabrielse, Phys. Rev. Lett. 95, 203001 (2005) CrossRefADSGoogle Scholar
  7. G.W.F. Drake, Can. J. Phys. 80, 1195 (2002) CrossRefADSGoogle Scholar
  8. K. Pachucki, J. Sapirstein, J. Phys. B 36, 803 (2003) CrossRefADSGoogle Scholar
  9. K. Pachucki, Phys. Rev. Lett. 97, 013002 (2006) CrossRefADSGoogle Scholar
  10. K. Pachucki, Phys. Rev. A 74, 022512 (2006) CrossRefADSGoogle Scholar
  11. S.D. Bergeson, A. Balakrishnan, K.G.H. Baldwin, T.B. Lucatorto, J.P. Marangos, T.J. McIlrath, T.R. O'Brian, S.L. Rolston, C.J. Sansonetti, Jesse Wen, N. Westbrook, C.H. Cheng, E.E. Eyler, Phys. Rev. Lett. 80, 3475 (1998) CrossRefADSGoogle Scholar
  12. S.D. Bergeson, K.G.H. Baldwin, T.B. Lucatorto, T.J. McIlrath, C.H. Cheng, E.E. Eyler, J. Opt. Soc. Am. B 17, 1599 (2000) CrossRefADSGoogle Scholar
  13. K.S.E. Eikema, W. Ubachs, W. Vassen, W. Hogervorst, Phys. Rev. A 55, 1866 (1997) CrossRefADSGoogle Scholar
  14. S. Hannemann, E.J. Salumbides, S. Witte, R.T. Zinkstok, E.-J. van Duijn, K.S.E. Eikema, W. Ubachs, Phys. Rev. A 74, 062514 (2006) CrossRefADSGoogle Scholar
  15. T. Trickl, A.H. Kung, Y.T. Lee, Phys. Rev. A 75, 022501 (2007) CrossRefADSGoogle Scholar
  16. C.D. Lin, W.R. Johnson, A. Dalgarno, Phys. Rev. A 15, 154 (1977) CrossRefADSGoogle Scholar
  17. G.W.F. Drake, Phys. Rev. A 3, 908 (1971) CrossRefADSGoogle Scholar
  18. M.C. Stowe, M.J. Thorpe, A. Pe'er, J. Ye, J.E. Stalnaker, V. Gerginov, S.A. Diddams, Adv. At. Mol. Opt. Phys. 55, 1 (2008) CrossRefGoogle Scholar
  19. A. Marian, M.C. Stowe, J.R. Lawall, D. Felinto, J. Ye, Science 306, 2063 (2004) CrossRefADSGoogle Scholar
  20. A. Marian, M.C. Stowe, D. Felinto, J. Ye, Phys. Rev. Lett. 95, 023001 (2005) CrossRefADSGoogle Scholar
  21. V. Gerginov, C.E. Tanner, S.A. Diddams, A. Bartels, L. Hollberg, Opt. Lett. 30, 1734 (2005) CrossRefADSGoogle Scholar
  22. D. Aumiler, T. Ban, H. Skenderović, G. Pichler, Phys. Rev. Lett. 95, 233001 (2005) CrossRefADSGoogle Scholar
  23. P. Fendel, S.D. Bergeson, Th. Udem, T.W. Hänsch, Opt. Lett. 32, 701 (2007) CrossRefADSGoogle Scholar
  24. J.E. Stalnaker, Y. Le Coq, T.M. Fortier, S.A. Diddams, C.W. Oates, L. Hollberg, preprint arXiv:physics/0701187v1 Google Scholar
  25. M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Science 311, 1595 (2006) CrossRefADSGoogle Scholar
  26. M.C. Stowe, F.C. Cruz, A. Marian, J. Ye, Phys. Rev. Lett. 96, 153001 (2006) CrossRefADSGoogle Scholar
  27. A. Pe'er, E.A. Shapiro, M.C. Stowe, M. Shapiro, J. Ye, Phys. Rev. Lett. 98, 113004 (2007) CrossRefADSGoogle Scholar
  28. R.J. Jones, K.D. Moll, M.J. Thorpe, J. Ye, Phys. Rev. Lett. 94, 193201 (2005) CrossRefADSGoogle Scholar
  29. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, Nature 436, 234 (2005) CrossRefADSGoogle Scholar
  30. S. Witte, R.T. Zinkstok, W. Ubachs, W. Hogervorst, K.S.E. Eikema, Science 307, 400 (2005) CrossRefADSGoogle Scholar
  31. R.T. Zinkstok, S. Witte, W. Ubachs, W. Hogervorst, K.S.E. Eikema, Phys. Rev. A 73, 061801 (2006) CrossRefADSGoogle Scholar
  32. R. Teets, J. Eckstein, T.W. Hänsch, Phys. Rev. Lett. 38, 760 (1977) CrossRefADSGoogle Scholar
  33. J.N. Eckstein, A.I. Ferguson, T.W. Hänsch, Phys. Rev. Lett. 40, 847 (1978) CrossRefADSGoogle Scholar
  34. M.J. Snadden, A.S. Bell, E. Riis, A.I. Ferguson, Opt. Comm. 125, 70 (1996). CrossRefADSGoogle Scholar
  35. N. Vujičić, S. Vdović, D. Aumiler, T. Ban, H. Skenderović, G. Pichler, Eur. Phys. J. D 41, 447 (2007) CrossRefADSGoogle Scholar
  36. D. Meshulach, Y. Silberberg, Phys. Rev. A 60, 1287 (1999) CrossRefADSGoogle Scholar
  37. D. Felinto, L.H. Acioli, S.S. Vianna, Phys. Rev. A 70, 043403 (2004) CrossRefADSGoogle Scholar
  38. D. Kielpinski, Phys. Rev. A 73, 063407 (2006) CrossRefADSGoogle Scholar
  39. P.J.J. Tol, N. Herschbach, E.A. Hessels, W. Hogervorst, W. Vassen, Phys. Rev. A 60, R761 (1999) Google Scholar
  40. F.P. Dos Santos, J. Léonard, J. Wang, C.J. Barrelet, F. Perales, E. Rasel, C.S. Unnikrishnan, M. Leduc, C. Cohen-tannoudji, Eur. Phys. J. D 19, 103 (2002) CrossRefADSGoogle Scholar
  41. K. Pachucki, Phys. Rev. A 74, 062510 (2006) CrossRefADSGoogle Scholar
  42. C. Dorrer, F. Nez, B. de Beauvoir, L. Julien, F. Biraben, Phys. Rev. Lett. 78, 3658 (1997) CrossRefADSGoogle Scholar
  43. G.W.F. Drake, W.C. Martin, Can. J. Phys. 76, 679 (1998) CrossRefADSGoogle Scholar
  44. W.C. Martin, Phys. Rev. A 36, 3575 (1987) CrossRefADSGoogle Scholar
  45. L. Hlousek, S.A. Lee, W.M. Fairbank, Jr., Phys. Rev. Lett. 50, 328 (1983) CrossRefADSGoogle Scholar
  46. Y.V. Baklanov, V.P. Chebotayev, Appl. Phys. 12, 97 (1977) CrossRefADSGoogle Scholar
  47. M.-K. Chen, J. Phys. B 28, 4189 (1995) CrossRefADSGoogle Scholar
  48. NIST Atomic Spectra Database Lines Table, http://physics.nist.gov/PhysRefData/ASD/index.html Google Scholar
  49. The 403S1 lifetime was obtained by extrapolating the lifetimes at 0 K from reference Theodosiou84 to n=40, then adding the decay rate induced by 300 K black-body radiation, estimated using equation (5.16) from T.F. Gallagher, Rydberg Atoms, Cambridge Univ. Press, Cambridge, 1994, p. 54 Google Scholar
  50. C.E. Theodosiou, Phys. Rev. A 30, 2910 (1984) CrossRefADSGoogle Scholar
  51. W. Lichten, D. Shiner, Z-X. Zhou, Phys. Rev. A 43, 1663 1991) Google Scholar
  52. C.J. Sansonetti, J.D. Gillaspy, Phys. Rev. A 45, R1 (1992) Google Scholar
  53. T. Ido, H. Katori, Phys. Rev. Lett. 91, 053001 (2003) CrossRefADSGoogle Scholar
  54. M.M. Boyd, T. Zelevinsky, A.D. Ludlow, S.M. Foreman, S. Blatt, T. Ido, J. Ye, Science 314, 1430 (2006) CrossRefADSGoogle Scholar
  55. K.A.H. van Leeuwen, W. Vassen, Europhys. Lett. 76, 409 (2006) CrossRefADSGoogle Scholar
  56. S.D. Bergeson, A. Balakrishnan, K.G.H. Baldwin, T.B. Lucatorto, J.P. Marangos, T.J. McIlrath, T.R. O'Brian, S.L. Rolston, C.J. Sansonetti, Jesse Wen, N. Westbrook, C.H. Cheng, E.E. Eyler, Phys. Scripta T83, 76 (1999) Google Scholar
  57. R.F. Stebbing, F.B. Dunning, F.K. Tittel, R.D. Rundel, Phys. Rev. Lett. 30, 815 (1973) CrossRefADSGoogle Scholar
  58. S.L. Palfrey, Ph.D. thesis (Harvard University, 1983, unpublished), p. 29 Google Scholar
  59. J.W. Farley, K.B. MacAdam, W.H. Wing, Phys. Rev. A 20, 1754 (1979) CrossRefADSGoogle Scholar
  60. T. Fujimoto, A. Hirabayashi, S. Okuda, K. Shimizu, H. Takuma, J. Phys. B. 19, 571 (1986) CrossRefADSMathSciNetGoogle Scholar
  61. R. Loudon, The Quantum Theory of Light, 3rd edn. (Oxford Univ. Press, Oxford, 2000), pp. 373–379 Google Scholar
  62. K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998) CrossRefADSGoogle Scholar
  63. One such amplifier is available from Toptica Photonics; see http://www.toptica.com Google Scholar
  64. M.A. Thomas, J.W. Humberston, J. Phys. B 5, L229 (1972) Google Scholar
  65. M. Masili, A.F. Starace, Phys. Rev. A 68, 012508 (2003) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • E. E. Eyler
    • 1
  • D. E. Chieda
    • 1
  • M. C. Stowe
    • 2
  • M. J. Thorpe
    • 2
  • T. R. Schibli
    • 2
  • J. Ye
    • 2
  1. 1.Physics DepartmentUniversity of ConnecticutStorrsUSA
  2. 2.Department of Physics, University of ColoradoJILA, National Institute of Standards and Technology and University of ColoradoBoulderUSA

Personalised recommendations