Advertisement

The European Physical Journal D

, Volume 45, Issue 3, pp 477–483 | Cite as

Mass-selected Ag3 clusters soft-landed onto MgO/Mo(100): femtosecond photoemission and first-principles simulations

  • T. Gleitsmann
  • M. E. Vaida
  • T. M. BernhardtEmail author
  • V. Bonačić-Koutecký
  • C. Bürgel
  • A. E. Kuznetsov
  • R. Mitrić
Electronic and Optical Properties, Chemistry

Abstract.

The electronic structure of supported mass-selected Ag3 clusters is analyzed by joint femtosecond photoemission spectroscopy and ab initio theoretical investigations. A wide band gap insulating magnesia ultra-thin film on Mo(100) has been chosen as substrate in order to minimize the electronic interaction between metal clusters and support. After magnesia ultra-thin film preparation no photoemission from the molybdenum substrate is observed anymore, instead very weak two photon photoemission is detected possibly originating from surface or subsurface oxide defect states. Soft-landing deposition of 2\({\%}\) of atomic monolayer equivalents of Ag3 clusters results in the disappearance also of the MgO two photon photoemission signal, while a strong single photon photoemission signal is detected from states located directly below the Fermi level. The theoretical study of structural, electronic and optical properties of Ag3 at two model sites of MgO (100), the stoichiometric MgO(100) and an FS-center defect, based on the DFT method and the embedded cluster model provides insight into the interactions between the cluster and the support which are responsible for the characteristic spectroscopic features.

PACS.

61.46.Bc Clusters 36.40.Cg Electronic and magnetic properties of clusters 79.60.-i Photoemission and photoelectron spectra 68.47.Jn Clusters on oxide surfaces  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Fayet, L. Wöste, Surf. Sci. 156, 135 (1985); G. Ganteför, M. Gausa, K.H. Meiwes-Broer, H.O. Lutz, J. Chem. Soc. Faraday Trans. 86, 2483 (1990); J. Ho, K.M. Ervin, W.C. Lineberger, J. Chem. Phys. 93, 6987 (1990); C. Jackschath, I. Rabin, W. Schulze, Ber. Bunsenges. Phys. Chem. 96, 1200 (1992); K.J. Taylor, C.L. Pettiette-Hall, O. Cheshnovsky, R.E. Smalley, J. Chem. Phys. 96, 3319 (1992); V. Bona\(\check{{\text c}}\)i\(\acute{{\text c}}\)-Kouteck\(\acute{{\text y}}\), L. Cespiva, P. Fantucci, J. Pittner, J. Kouteck\(\acute{{\text y}}\), J. Chem. Phys. 100, 490 (1994); S. Wolf, G. Sommerer, S. Rutz, E. Schreiber, T. Leisner, L. Wöste, R.S. Berry, Phys. Rev. Lett. 74, 4177 (1995); A. Fielicke, I. Rabin, G. Meijer, J. Phys. Chem. A 110, 8060 (2006); X. Xing, R.M. Danell, I.L. Garzon, K. Michaelian, M.N. Blom, M.M. Burns, J.H. Parks, Phys. Rev. B 72, 081405 (2005); P. Weis, T. Bierweiler, S. Gilb, M.M. Kappes, Chem. Phys. Lett. 355, 355 (2002) CrossRefGoogle Scholar
  2. J. Jortner, Z. Phys. D 24, 247 (1992); U. Landman, Int. J. Mod. Phys. B 6, 3623 (1992); V. Bona\(\check{{\text c}}\)i\(\acute{{\text c}}\)-Kouteck\(\acute{{\text y}}\), P. Fantucci, J. Kouteck\(\acute{{\text y}}\), Chem. Rev. 91, 1035 (1991) CrossRefADSGoogle Scholar
  3. K. Bromann, C. Felix, H. Brune, H. Harbich, R. Monot, J. Buttet, K. Kern, Surf. Sci. 377, 1041 (1997); R. Schaub, H. Jödicke, F. Brunet, R. Monot, J. Buttet, W. Harbich, Phys. Rev. Lett. 86, 3590 (2001); L. Benz, X. Tong, P. Kemper, Y. Lilach, A. Kolmakov, H. Metiu, M.T. Bowers, S.K. Buratto, J. Chem. Phys. 122, 081102 (2005) CrossRefGoogle Scholar
  4. U. Busolt, E. Cottancin, H. Rohr, L. Socaciu, T. Leisner, L. Wöste, Eur. Phys. J. D 9, 523 (1999); U. Busolt, E. Cottancin, H. Rohr, L. Socaciu, T. Leisner, L. Wöste, Appl. Phys. B 68, 453 (1999); U. Busolt, E. Cottancin, L. Socaciu, H. Rohr, T. Leisner, L. Wöste, Eur. Phys. J. D 16, 297 (2001) CrossRefADSGoogle Scholar
  5. F. Federmann, K. Hoffmann, N. Quaas, J.P. Toennies, Eur. Phys. J. D 9, 11 (1999); T. Diederich, J. Tiggesbäumker, K.H. Meiwes-Broer, J. Chem. Phys. 116, 3263 (2002); P. Radcliffe, A. Przystawik, T. Diederich, T. Döppner, J. Tiggesbäumker, K.H. Meiwes-Broer, Phys. Rev. Lett. 92, 173403 (2004) CrossRefADSGoogle Scholar
  6. S. Fedrigo, W. Harbich, J. Buttet, Phys. Rev. B 47, 10706 (1993); U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995); W. Krasser, U. Kettler, P.S. Bechthold, Chem. Phys. Lett. 86, 223 (1982); L. König, I. Rabin, W. Schulze, G. Ertl, Science 274, 1353 (1996); C. Félix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, G. Ertl, Phys. Rev. Lett. 86, 2992 (2001); W. Schulze, I. Rabin, G. Ertl, Chem. Phys. Chem 5, 403 (2004) CrossRefADSGoogle Scholar
  7. L.A. Peyser, A.E. Vinson, A.P. Bartko, R.M. Dickson, Science 291, 103 (2001); T. Gleitsmann, B. Stegemann, T.M. Bernhardt, Appl. Phys. Lett. 84, 4050 (2004); T. Gleitsmann, T.M. Bernhardt, L. Wöste, Appl. Phys. A 82, 125 (2006) CrossRefADSGoogle Scholar
  8. C.D. Geddes, A. Parfenov, I. Gryczynski, J.R. Lakowicz, J. Phys. Chem. B 107, 9989 (2003); A. Maali, T. Cardinal, T. Treguer-Delapierre, Physica E 17, 559 (2003) CrossRefGoogle Scholar
  9. B. Stegemann, T. Gleitsmann, T.M. Bernhardt, Verfahren zur optischen Datenspeicherung in Schichten aus Silberoxid mittels ultrakurzer Laserpulse (DE 10 2004 005 062 A1), Patentblatt des Deutschen Patent- und Markenamtes 125, 21711 (2005) Google Scholar
  10. C. Bürgel, R. Mitri\(\acute{{\text c}}\), V. Bona\(\check{{\text c}}\)i\(\acute{{\text c}}\)-Kouteck\(\acute{{\text y}}\), Appl. Phys. A 82, 117 (2006) CrossRefADSGoogle Scholar
  11. V. Bona\(\check{\text c}\)i\(\acute{\text c}\)-Kouteck\(\acute{{\text y}}\), C. Bürgel, L. Kronik, A.E. Kuznetsov, R. Mitrić, Eur. J. Phys. D, submitted Google Scholar
  12. M.E. Vaida, T. Gleitsmann, D. Popolan, S. Lang, G. Stibenz, B. Stegemann, L. Wöste, T.M. Bernhardt, in preparation Google Scholar
  13. S. Schintke, S. Messerli, M. Pivetta, F. Patthey, L. Libioulle, M. Stengel, A. De Vita, W.-D. Schneider, Phys. Rev. Lett. 87, 276801 (2001) CrossRefADSGoogle Scholar
  14. M.-C. Wu, J.S. Corneille, C.A. Estrada, J.-W. He, D.W. Goodman, Chem. Phys. Lett. 182, 472 (1991); U. Heiz, F. Vanolli, L. Trento, W.-D. Schneider, Rev. Sci. Instrum. 68, 1986 (1997) CrossRefADSGoogle Scholar
  15. K. Onda, B. Li, H. Petek, Phys. Rev. B 70, 045415 (2004) CrossRefADSMathSciNetGoogle Scholar
  16. K. Onda, B. Li, J. Zhao, K.D. Jordan, J. Yang, H. Petek, Science 308, 1154 (2005); J. Zhao, B. Li, K. Onda, M. Feng, H. Petek, Chem. Rev. 106, 4402 (2006) CrossRefADSGoogle Scholar
  17. M. Aeschlimann, M. Bauer, S. Pawlik, R. Knorren, G. Bouzerar, K.H. Bennemann, Appl. Phys. A 71, 485 (2000) CrossRefADSGoogle Scholar
  18. F. Evers, C. Rakete, K. Watanabe, D. Menzel, H.J. Freund, Surf. Sci. 593, 43 (2005) CrossRefADSGoogle Scholar
  19. M.-C. Wu, J.S. Corneille, J.-W. He, C.A. Estrada, D.W. Goodman, J. Vac. Sci. Technol. A 10, 1467 (1992) CrossRefADSGoogle Scholar
  20. R. Keller, F. Nöhmeier, P. Spädtke, M.H. Schönenberg, Vacuum 34, 31 (1984) CrossRefGoogle Scholar
  21. T.M. Bernhardt, Int. J. Mass Spectrom. 243, 1 (2005) CrossRefGoogle Scholar
  22. M. Vaida, Design and Construction of a Low Energy Ion Guide System for Soft-Landing Experiments with Mass-Selected Metal Clusters, Master-Thesis, Free University of Berlin, 2004 Google Scholar
  23. M. Sterrer, E. Fischbach, T. Risse, H.J. Freund, Phys. Rev. Lett. 94, 186101 (2004) CrossRefADSGoogle Scholar
  24. T. Gleitsmann, M. Vaida, T.M. Bernhardt, in preparation Google Scholar
  25. A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R.N. Barnett, U. Landman, J. Phys. Chem. A 103, 9573 (1999) CrossRefGoogle Scholar
  26. P.V. Sushko, A.L. Shluger, C.R.A. Catlow, Surf. Sci. 450, 153 (2000) CrossRefGoogle Scholar
  27. A. Mönnich, J. Lange, M. Bauer, M. Aeschlimann, Phys. Rev. B 74, 035102 (2006) CrossRefADSGoogle Scholar
  28. S. Berge, P.O. Gartland, B.J. Slagsvold, Surf. Sci. 43, 275 (1974) CrossRefGoogle Scholar
  29. V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1996) Google Scholar
  30. D. Ochs, W. Maus-Friedrichs, M. Brause, J. Günster, V. Kempter, V. Puchin, A. Shluger, L. Kantorovich, Surf. Sci. 365, 557 (1996) CrossRefGoogle Scholar
  31. P.V. Sushko, J.L. Gavartin, A.L. Shluger, J. Phys. Chem. B 106, 2269 (2002); G. Pacchioni, Chem. Phys. Chem. 4, 1041 (2003); M. Sterrer, E. Fischbach, M. Heyde, N. Nilius, H.-P. Rust, T. Risse, H.J. Freund, J. Phys. Chem. B 110, 8665 (2006); M. Sterrer, M. Heyde, M. Novicki, N. Nilius, T. Risse, H.-P. Rust, G. Pacchioni, H.J. Freund, J. Phys. Chem. B 110, 46 (2006) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • T. Gleitsmann
    • 1
  • M. E. Vaida
    • 1
  • T. M. Bernhardt
    • 1
    Email author
  • V. Bonačić-Koutecký
    • 2
  • C. Bürgel
    • 2
  • A. E. Kuznetsov
    • 2
  • R. Mitrić
    • 2
  1. 1.Institut für Oberflächenchemie und Katalyse, Universität UlmUlmGermany
  2. 2.Institut für Chemie, Humboldt Universität zu BerlinBerlinGermany

Personalised recommendations