Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Self-assembly of Mo 6S 8 clusters on the Au(111) surface

  • 169 Accesses

  • 7 Citations

Abstract.

The preferred adsorption sites and the propensity for a self-organised growth of the molybdenum sulfide cluster Mo6S8 on the Au(111) surface are investigated by density-functional band-structure calculations with pseudopotentials and a plane wave basis set. The quasi-cubic cluster preferentially adsorbs via a face and remains structurally intact. It experiences a strong, mostly non-ionic attraction to the surface at several quasi-isoenergetic adsorption positions. A scan of the potential energy surface exhibits only small barriers between adjacent strong adsorption sites. Hence, the cluster may move in a potential well with degenerate local energy minima at room temperature. The analysis of the electronic structure reveals a negligible electron transfer and S-Au hybridised states, which indicate that the cluster-surface interaction is dominated by S-Au bonds, with minor contributions from the Mo atom in the surface vicinity. All results indicate that Mo6S8 clusters on the Au(111) surface can undergo a template-mediated self-assembly to an ordered inorganic monolayer, which is still redox active and may be employed as surface-active agent in the integration of noble metal and ionic or biological components within nano-devices. Therefore, a classical potential model was developed on the basis of the DFT data, which allows to study larger cluster assemblies on the Au(111).

This is a preview of subscription content, log in to check access.

References

  1. Z.R. Zhou, L. Vincent, Wear 229, 962 (1999)

  2. M.D. Levi, D. Aurbach, J. Power Sources 146, 349 (2005)

  3. J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsoe, B.S. Clausen, E. Laegsgaard, F. Besenbacher, Nature Nanotech. 2, 53 (2007)

  4. Y.R. Hacohen, R. Popovits-Biro, Y. Prior, S. Gemming, G. Seifert, R. Tenne, Phys. Chem. Chem. Phys. 5 1644 (2003)

  5. N. Bertram, Y.D. Kim, G. Ganteför, Appl. Phys. A (to be published)

  6. S. Gemming, G. Seifert, Appl. Phys. A 82, 175 (2006)

  7. S. Gemming, G. Seifert, Novel Elongated Molybdenum Sulfide Nanostructures in Proc. 19th International Winterschool on Electronic Properties of Novel Materials, AIP Conf. Proc. 786, 353 (2005)

  8. E.H.K. et al., Am. Inst. Phys. 786, 353 (2005)

  9. N. Bertram, Y.D. Kim, G. Gantefor, Q. Sun, P. Jena, J. Tamuliene, G. Seifert, Chem. Phys. Lett. 396, 341 (2004)

  10. G. Seifert, J. Tamuliene, S. Gemming, Comp. Mat. Sci. 35, 316 (2006)

  11. X.D. Wen, T. Zeng, Y.W Li, J. Wang, H. Jiao, J. Phys. Chem B 109, 18491 (2005)

  12. M. Brändle, G. Calzaferri, M. Lanz, Chem. Phys. 201, 141 (1995)

  13. P. Murugan, V. Kumar, Y. Kawazoe, N. Ota, Phys. Rev. A 71, 063203 (2005)

  14. W. Zhang, X. Ran, H. Zhao, L. Wang, J. Chem. Phys. 121, 7717 (2004)

  15. R.P. Diez, Int. J. Quant. Chem. 76, 105 (2000)

  16. V. Koteski, B. Cekić, N. Novaković, J. Beloševic-Čavor, Mater. Sci. Forum 494, 79 (2005)

  17. D. Salloum, R. Gautier, P. Gougeon, M. Potel, Sol. St. Chem. 177, 1672 (2004)

  18. S. Picard, D. Salloum, P. Gougeon, M. Potel, Acta Cryst. C60, i61 (2004)

  19. J.M. Lightstone, M.J. Patterson, M.G. White, Chem. Phys. Lett. 413, 429 (2005)

  20. X.-D. Wen, T. Zeng, B.-T. Teng, F.-Q. Zhang, Y.-W. Li, J. Wang, H. Jiao, J. Mol. Cat. A 249, 191 (2006)

  21. M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Norskov, S. Helveg, F. Besenbacher, Phys. Rev. Lett. 87, 196803 (2001)

  22. H. Topsoe, B. Hinnemann, J.K. Norskov, J.V. Lauritsen, F. Besenbacher, P.L. Hansen, G. Hytoft, R.G. Egeberg, K.G. Knudesen, Catal. Today 107, 12 (2005)

  23. M. Bar-Sadan, A.N. Enyashin, S. Gemming, R. Popovits-Biro, S. Y. Hong, Y. Prior, R. Tenne, G. Seifert, J. Phys. Chem. B 110, 25399 (2006)

  24. A. N. Enyashin, S. Gemming, M. Bar-Sadan, R. Popovits-Biro, S.Y. Hong, Y. Prior, R. Tenne, G. Seifert, Ang. Chem. Int. Ed. 46, 623 (2007)

  25. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Phys. Rev. Lett. 85, 146 (2000)

  26. R. Tenne, Nature Nanotech. 1, 103 (2006)

  27. S. Gemming, G. Seifert, I. Vilfan, Phys. Stat. Sol. B 243, 3320 (2006)

  28. J. Kristensen, J. Zhang, I. Chorkendorff, J. Ulstrup, B.L. Ooi, Dalton Trans., 3985,(2006)

  29. J.M. Lightstone, M.J. Patterson, J. Lofaro, P. Liu, M.G. White, Proc. XIII International Symposium on Small Particles and Inorganic Clusters, Göteborg University, Sweden, 2006, p. 155

  30. M.M. Biener, J. Biener, R. Schalek, C.M. Friend, Surf. Sci. 594, 221 (2005)

  31. D.V. Potapenko, J.M. Horn, R.J. Beuhler, Z. Song, M.G. White, Surf. Sci. 574, 244 (2005)

  32. The ABINIT code is a common project of the Universite Catholique de Louvain, Corning Incorporated, and other contributors (URL http://www.abinit.org)

  33. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

  34. W. Kohn, L. Sham, Phys. Rev. 140, 1133 (1965)

  35. N. Troullier, J. Martins, Phys. Rev. B 43, 8861 (1991)

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865, (1996)

  37. R.W.F. Bader, Atoms in Molecules: A Quantum Theory (Oxford University, NY, 1994)

  38. J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th edn. (HarperCollins, New York, USA, 1993)

  39. S. Gemming, G. Seifert, Nature Nanotech. 2, 22 (2007)

Download references

Author information

Correspondence to I. Popov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Popov, I., Kunze, T., Gemming, S. et al. Self-assembly of Mo 6S 8 clusters on the Au(111) surface. Eur. Phys. J. D 45, 439–446 (2007). https://doi.org/10.1140/epjd/e2007-00170-1

Download citation

PACS.

  • 61.46.-w Nanoscale materials
  • 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
  • 72.20.-i Conductivity phenomena in semiconductors and insulators