The European Physical Journal D

, Volume 45, Issue 3, pp 439–446 | Cite as

Self-assembly of Mo 6S 8 clusters on the Au(111) surface

  • I. PopovEmail author
  • T. Kunze
  • S. Gemming
  • G. Seifert
Geometrical Structure and Dynamics


The preferred adsorption sites and the propensity for a self-organised growth of the molybdenum sulfide cluster Mo6S8 on the Au(111) surface are investigated by density-functional band-structure calculations with pseudopotentials and a plane wave basis set. The quasi-cubic cluster preferentially adsorbs via a face and remains structurally intact. It experiences a strong, mostly non-ionic attraction to the surface at several quasi-isoenergetic adsorption positions. A scan of the potential energy surface exhibits only small barriers between adjacent strong adsorption sites. Hence, the cluster may move in a potential well with degenerate local energy minima at room temperature. The analysis of the electronic structure reveals a negligible electron transfer and S-Au hybridised states, which indicate that the cluster-surface interaction is dominated by S-Au bonds, with minor contributions from the Mo atom in the surface vicinity. All results indicate that Mo6S8 clusters on the Au(111) surface can undergo a template-mediated self-assembly to an ordered inorganic monolayer, which is still redox active and may be employed as surface-active agent in the integration of noble metal and ionic or biological components within nano-devices. Therefore, a classical potential model was developed on the basis of the DFT data, which allows to study larger cluster assemblies on the Au(111).


61.46.-w Nanoscale materials 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals 72.20.-i Conductivity phenomena in semiconductors and insulators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Z.R. Zhou, L. Vincent, Wear 229, 962 (1999) CrossRefGoogle Scholar
  2. M.D. Levi, D. Aurbach, J. Power Sources 146, 349 (2005) CrossRefGoogle Scholar
  3. J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsoe, B.S. Clausen, E. Laegsgaard, F. Besenbacher, Nature Nanotech. 2, 53 (2007) CrossRefADSGoogle Scholar
  4. Y.R. Hacohen, R. Popovits-Biro, Y. Prior, S. Gemming, G. Seifert, R. Tenne, Phys. Chem. Chem. Phys. 5 1644 (2003) Google Scholar
  5. N. Bertram, Y.D. Kim, G. Ganteför, Appl. Phys. A (to be published) Google Scholar
  6. S. Gemming, G. Seifert, Appl. Phys. A 82, 175 (2006) CrossRefADSGoogle Scholar
  7. S. Gemming, G. Seifert, Novel Elongated Molybdenum Sulfide Nanostructures in Proc. 19th International Winterschool on Electronic Properties of Novel Materials, AIP Conf. Proc. 786, 353 (2005) CrossRefADSGoogle Scholar
  8. E.H.K. et al., Am. Inst. Phys. 786, 353 (2005) Google Scholar
  9. N. Bertram, Y.D. Kim, G. Gantefor, Q. Sun, P. Jena, J. Tamuliene, G. Seifert, Chem. Phys. Lett. 396, 341 (2004) CrossRefADSGoogle Scholar
  10. G. Seifert, J. Tamuliene, S. Gemming, Comp. Mat. Sci. 35, 316 (2006) CrossRefGoogle Scholar
  11. X.D. Wen, T. Zeng, Y.W Li, J. Wang, H. Jiao, J. Phys. Chem B 109, 18491 (2005) CrossRefGoogle Scholar
  12. M. Brändle, G. Calzaferri, M. Lanz, Chem. Phys. 201, 141 (1995) CrossRefADSGoogle Scholar
  13. P. Murugan, V. Kumar, Y. Kawazoe, N. Ota, Phys. Rev. A 71, 063203 (2005) CrossRefADSGoogle Scholar
  14. W. Zhang, X. Ran, H. Zhao, L. Wang, J. Chem. Phys. 121, 7717 (2004) CrossRefADSGoogle Scholar
  15. R.P. Diez, Int. J. Quant. Chem. 76, 105 (2000) CrossRefGoogle Scholar
  16. V. Koteski, B. Cekić, N. Novaković, J. Beloševic-Čavor, Mater. Sci. Forum 494, 79 (2005) CrossRefGoogle Scholar
  17. D. Salloum, R. Gautier, P. Gougeon, M. Potel, Sol. St. Chem. 177, 1672 (2004) CrossRefADSGoogle Scholar
  18. S. Picard, D. Salloum, P. Gougeon, M. Potel, Acta Cryst. C60, i61 (2004) Google Scholar
  19. J.M. Lightstone, M.J. Patterson, M.G. White, Chem. Phys. Lett. 413, 429 (2005) CrossRefADSGoogle Scholar
  20. X.-D. Wen, T. Zeng, B.-T. Teng, F.-Q. Zhang, Y.-W. Li, J. Wang, H. Jiao, J. Mol. Cat. A 249, 191 (2006) CrossRefGoogle Scholar
  21. M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Norskov, S. Helveg, F. Besenbacher, Phys. Rev. Lett. 87, 196803 (2001) CrossRefADSGoogle Scholar
  22. H. Topsoe, B. Hinnemann, J.K. Norskov, J.V. Lauritsen, F. Besenbacher, P.L. Hansen, G. Hytoft, R.G. Egeberg, K.G. Knudesen, Catal. Today 107, 12 (2005) CrossRefGoogle Scholar
  23. M. Bar-Sadan, A.N. Enyashin, S. Gemming, R. Popovits-Biro, S. Y. Hong, Y. Prior, R. Tenne, G. Seifert, J. Phys. Chem. B 110, 25399 (2006) CrossRefGoogle Scholar
  24. A. N. Enyashin, S. Gemming, M. Bar-Sadan, R. Popovits-Biro, S.Y. Hong, Y. Prior, R. Tenne, G. Seifert, Ang. Chem. Int. Ed. 46, 623 (2007) CrossRefGoogle Scholar
  25. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Phys. Rev. Lett. 85, 146 (2000) CrossRefADSGoogle Scholar
  26. R. Tenne, Nature Nanotech. 1, 103 (2006) CrossRefADSGoogle Scholar
  27. S. Gemming, G. Seifert, I. Vilfan, Phys. Stat. Sol. B 243, 3320 (2006) CrossRefGoogle Scholar
  28. J. Kristensen, J. Zhang, I. Chorkendorff, J. Ulstrup, B.L. Ooi, Dalton Trans., 3985,(2006) Google Scholar
  29. J.M. Lightstone, M.J. Patterson, J. Lofaro, P. Liu, M.G. White, Proc. XIII International Symposium on Small Particles and Inorganic Clusters, Göteborg University, Sweden, 2006, p. 155 Google Scholar
  30. M.M. Biener, J. Biener, R. Schalek, C.M. Friend, Surf. Sci. 594, 221 (2005) CrossRefADSGoogle Scholar
  31. D.V. Potapenko, J.M. Horn, R.J. Beuhler, Z. Song, M.G. White, Surf. Sci. 574, 244 (2005) CrossRefADSGoogle Scholar
  32. The ABINIT code is a common project of the Universite Catholique de Louvain, Corning Incorporated, and other contributors (URL Google Scholar
  33. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) Google Scholar
  34. W. Kohn, L. Sham, Phys. Rev. 140, 1133 (1965) CrossRefADSMathSciNetGoogle Scholar
  35. N. Troullier, J. Martins, Phys. Rev. B 43, 8861 (1991) CrossRefADSGoogle Scholar
  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865, (1996) CrossRefADSGoogle Scholar
  37. R.W.F. Bader, Atoms in Molecules: A Quantum Theory (Oxford University, NY, 1994) Google Scholar
  38. J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th edn. (HarperCollins, New York, USA, 1993) Google Scholar
  39. S. Gemming, G. Seifert, Nature Nanotech. 2, 22 (2007) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Physikalische Chemie, TU DresdenDresdenGermany
  2. 2.Institute of PhysicsChemnitzGermany
  3. 3.Institute of Ion Beam Physics and Materials ResearchDresdenGermany

Personalised recommendations