Advertisement

The European Physical Journal D

, Volume 45, Issue 3, pp 409–413 | Cite as

Experimental and theoretical studies of interactions between Si7 clusters

  • F.v. Gynz-Rekowski
  • W. Quester
  • R. Dietsche
  • D. C. Lim
  • N. Bertram
  • T. Fischer
  • G. Ganteför
  • M. Schach
  • P. Nielaba
  • Y. D. KimEmail author
Geometrical Structure and Dynamics

Abstract.

The possibility of using magic Si7 clusters to form a cluster material was studied experimentally and theoretically. In experiments Si7 clusters were deposited on carbon surfaces, and the electronic structure and chemical properties of the deposited clusters were measured using X-ray photoelectron spectroscopy (XPS). A non bulk-like electronic structure of Si7 was found in the Si 2p core level spectra. Si7 is suggested to form a more stable structure than the non-magic Si8 cluster and Si atoms upon deposition on carbon surfaces. Theoretically it was possible to study the interaction between the clusters without the effect of a surface. Density functional theory (DFT) calculations of potential curves of two free Si7 clusters approaching each other in various orientations hint at the formation of cluster materials rather than the fusion of clusters forming bulk-like structures.

PACS.

31.15.Ew Density-functional theory 33.60.Fy X-ray photoelectron spectra 34.20.Cf Interatomic potentials and forces 36.40.-c Atomic and molecular clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347, 354 (1990) CrossRefADSGoogle Scholar
  2. T.M. Bernhardt, B. Stegemann, B. Kaiser, K. Rademann, Angew. Chem. Int. Ed. 42, 199 (2003) CrossRefGoogle Scholar
  3. M. Grass, D. Fischer, M. Mathes, G. Ganteför, P. Nielaba, Appl. Phys. Lett. 81, 3810 (2002) CrossRefADSGoogle Scholar
  4. O. Cheshnovsky, S.H. Yang, C.L. Pettiette, M.J. Craycraft, Y. Liu, R.E. Smalley, Chem. Phys. Lett. 138, 119 (1987) CrossRefADSGoogle Scholar
  5. M. Maus, G. Ganteför, W. Eberhardt, Appl. Phys. A 70, 535 (2000) CrossRefADSGoogle Scholar
  6. B. Klipp, M. Grass, J. Müller, D. Stolcic, U. Lutz, G. Ganteför, T. Schlenker, J. Boneberg, P. Leiderer, Appl. Phys. A 73, 547 (2001) CrossRefADSGoogle Scholar
  7. H. Haberland, M. Mall, M. Moseler, Y. Qiang, T. Reiners, Y. Thurner, J. Vac. Sci. Technol. A. 12, 2925 (1994) CrossRefADSGoogle Scholar
  8. cpmd, Copyright IBM Corp 1990–2001, Copyright MPI für Festkörperforschung Stuttgart 1997–2004 Google Scholar
  9. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991). The pseudo potential for Si was constructed using Hamanns code from www.cpmd.org. For the “s-channel” rcut = 1.9 a.u. was chosen, for p and d: rcut = 2.1 a.u. CrossRefADSGoogle Scholar
  10. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  11. I. Lopez-Salido, D.C. Lim, R. Dietsche, Y.D. Kim, J. Phys. Chem. B. 110, 1128 (2006) CrossRefGoogle Scholar
  12. W. Quester, Ph.D. thesis, University of Konstanz (in preparation) Google Scholar
  13. D. Tománek, M.A. Schluter, Phys. Rev. B 36, 1208 (1987) CrossRefADSGoogle Scholar
  14. S. Wei, R.N. Barnett, U. Landman, Phys. Rev. B 55, 7935 (1997) CrossRefADSGoogle Scholar
  15. E.C. Honea, A. Ogura, D.R. Peale, C. Félix, C.A. Murray, K. Raghavachari, W.O. Sprenger, M.F. Jarrold, F.L. Brown, J. Chem. Phys. 110, 12161 (1999) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • F.v. Gynz-Rekowski
    • 1
  • W. Quester
    • 1
  • R. Dietsche
    • 1
  • D. C. Lim
    • 1
  • N. Bertram
    • 1
  • T. Fischer
    • 1
  • G. Ganteför
    • 1
  • M. Schach
    • 1
  • P. Nielaba
    • 1
  • Y. D. Kim
    • 2
    Email author
  1. 1.Department of PhysicsUniversity of KonstanzKonstanzGermany
  2. 2.Division of Nano Sciences and Department of ChemistryEwha Womans UniversitySeoulKorea

Personalised recommendations