Advertisement

The European Physical Journal D

, Volume 43, Issue 1–3, pp 101–104 | Cite as

Energy distributions of clusters cooled by thermal radiation

  • J. Stenfalk
  • K. HansenEmail author
Structure and Thermodynamics of Free Clusters

Abstract.

Particles that cool radiatively in vacuum reach a limiting energy distribution, defined by the low energy dielectric function, the heat capacity and time. We find that in a finite time, both mean temperature and the width of the distribution converge to powerlaws in time, and that the ratio of the two reach a constant value which depends on the heat capacity and the photon absorption cross section. Further, both the photon emission rate and the ratio of width to mean energy of the distribution show surprising similarities with the analogous results for cooling by particle evaporation.

PACS.

36.40.-c Atomic and molecular clusters 61.46.Bc Clusters 61.46.Df Nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Weber, R. Scholl, J. Appl. Phys. 74, 607 (1993) CrossRefADSGoogle Scholar
  2. R. Mitzner, E.E.B. Campbell, J. Chem. Phys. 103, 2445 (1995) CrossRefADSGoogle Scholar
  3. U. Frenzel, A. Roggenkamp, D. Kreisle, Chem. Phys. Lett. 240, 109 (1995) CrossRefADSGoogle Scholar
  4. G. Ganteför et al., Phys. Rev. Lett. 77, 4524 (1996) CrossRefADSGoogle Scholar
  5. R.C. Dunbar, J. Chem. Phys. 90, 7369 (1989) CrossRefADSGoogle Scholar
  6. R.C. Dunbar, C. Lifshitz, J. Chem. Phys. 94, 3542 (1991) CrossRefADSGoogle Scholar
  7. M. Larsson et al., J. Phys. B 27, 1397 (1994) CrossRefADSGoogle Scholar
  8. K. Hansen, E.E.B. Campbell, J. Chem. Phys. 104, 5012 (1996) CrossRefADSGoogle Scholar
  9. J.U. Andersen et al., Phys. Rev. Lett. 77, 3991 (1996) CrossRefADSGoogle Scholar
  10. J. Laskin, C. Lifshitz, Chem. Phys. Lett. 277, 564 (1997) CrossRefGoogle Scholar
  11. A.A. Agarkov et al., Eur. Phys. J. D 9, 331 (1999) CrossRefADSGoogle Scholar
  12. S. Tomita et al., Phys. Rev. Lett. 87, 073401 (2001) CrossRefADSGoogle Scholar
  13. C.E. Klots, Z. Phys. D 21, 335 (1991) CrossRefGoogle Scholar
  14. J.U. Andersen, E. Bonderup, K. Hansen, J. Phys. B 35, R1 (2002) Google Scholar
  15. J.U. Andersen, E. Bonderup, K. Hansen, J. Chem. Phys. 114, 6518 (2001) CrossRefADSGoogle Scholar
  16. D. Gross, Microcanonical Thermodynamics (World Scientific, Lecture Notes in Physics, 2001), Vol. 66 Google Scholar
  17. J.U. Andersen et al., Eur. Phys. J. D 17, 189 (2001) CrossRefADSGoogle Scholar
  18. U. Näher, K. Hansen, J. Chem. Phys. 101, 5367 (1994) CrossRefADSGoogle Scholar
  19. J.U. Andersen, E. Bonderup, Eur. Phys. J. D 11, 413 (2000) CrossRefADSMathSciNetGoogle Scholar
  20. M. Hedén et al., J. Chem. Phys. 123, 044310 (2005) CrossRefGoogle Scholar
  21. K. Hansen, U. Näher, Phys. Rev. A 60, 1240 (1999) CrossRefADSGoogle Scholar
  22. K. Hansen et al., Phys. Rev. Lett. 87, 123401 (2001) CrossRefADSGoogle Scholar
  23. J.U. Andersen et al., Eur. Phys. J. D 25, 139 (2003) CrossRefADSGoogle Scholar
  24. K. Hansen, E.E.B. Campbell, Phys. Rev. E 58, 5477 (1998) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Niels Bohr Institute, Ørsted Laboratory, University of Copenhagen, Universitetsparken 5Copenhagen ØDenmark
  2. 2.Department of PhysicsGöteborg UniversityGöteborgSweden

Personalised recommendations