The European Physical Journal D

, Volume 43, Issue 1–3, pp 97–100 | Cite as

On the melting phase transition of aluminum clusters around 55 atoms

  • W. Zhang
  • F. S. ZhangEmail author
  • Z. Y. Zhu
Structure and Thermodynamics of Free Clusters


Melting phase transition of atomic clusters has attracted a lot of interest in the last several decades due to their peculiar behaviors different from their bulk counterpart. Investigation of this kind of phase transition leads to the understanding of thermodynamics of finite systems. Recent progress in the experiments measuring thermodynamic properties of sized-selected atomic clusters has motivated the theoretical research interest in this area. In this report, heat capacities of aluminum clusters with around 55 atoms are investigated using extremely long constant energy molecular dynamics simulation with empirical many-body interaction potential. Some features of the heat capacity can be interpreted by the energy spectra obtained from quenches along the trajectories. Dips that emerged in the heat capacities in the previous experiment are not found. Different isomers are taken as the initial structures and found to anneal into the lowest energy structure before melting during the temperature increasing process.


36.40.-c Atomic and molecular clusters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. F. Balletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005) CrossRefADSGoogle Scholar
  2. M. Schmidt, R. Kusche, W. Kronmüller, B. Issendorff, H. Haberland, Phys. Rev. Lett. 79, 99 (1997) CrossRefADSGoogle Scholar
  3. M. Schmidt, R. Kusche, B. Issendorff, H. Haberland, Nature 393, 238 (1998) CrossRefADSGoogle Scholar
  4. G.A. Breaux, R.C. Benirschke, T. Sugai, B.S. Kinnear, M.F. Jarrold, Phys. Rev. Lett. 91, 215508 (2003) CrossRefADSGoogle Scholar
  5. G.A. Breaux, D.A. Hillman, C.M. Neal, R.C. Benirschke, M.F. Jarrold, J. Am. Chem. Soc. 126, 8628 (2004) CrossRefGoogle Scholar
  6. G.A. Breaux, C.M. Neal, B. Cao, M.F. Jarrold, Phys. Rev. Lett. 94, 173401 (2005) CrossRefADSGoogle Scholar
  7. H. Haberland, T. Hippler, J. Donges, O. Kostko, M. Schmidt, B. Issendorff, Phys. Rev. Lett. 94, 035701 (2005) CrossRefADSGoogle Scholar
  8. G. Bertsch, Science 277, 1619 (1997) CrossRefGoogle Scholar
  9. R.S. Berry, Nature 393, 212 (1998) CrossRefADSGoogle Scholar
  10. H.L. Davis, J. Jellinek, R.S. Berry, J. Chem. Phys. 86, 6456 (1987) CrossRefADSGoogle Scholar
  11. A. Heidenreich, I. Oref, J. Jortnor, J. Phys. Chem. 96, 7517 (1992) CrossRefGoogle Scholar
  12. J. Jellinek, A. Goldberg, J. Chem. Phys. 113, 2570 (2000) CrossRefADSGoogle Scholar
  13. F. Calvo, F. Spiegelmann, J. Chem. Phys. 120, 9684 (2004) CrossRefADSGoogle Scholar
  14. K. Manninen, A. Rytkonen, M. Manninen, Eur. Phys. J. D 29, 39 (2004) CrossRefADSGoogle Scholar
  15. D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997) CrossRefGoogle Scholar
  16. D.J. Wales, Science 293, 2067 (2001) CrossRefADSGoogle Scholar
  17. Y.G. Chushak, L.S. Bartell, J. Phys. Chem. B 105, 11605 (2001) CrossRefGoogle Scholar
  18. A. Aguado, J.M. Lopez, Phys. Rev. Lett. 94, 233401 (2005) CrossRefADSGoogle Scholar
  19. M. Lee, S. Chacko, D.G. Kanhere, J. Chem. Phys. 123, 164310 (2005) CrossRefADSGoogle Scholar
  20. E.G. Noya, J.P.K. Doye, F. Calvo, Phys. Rev. B 73, 125407 (2006) CrossRefADSGoogle Scholar
  21. R.P. Gupta, Phys. Rev. B 23, 6265 (1981) CrossRefADSGoogle Scholar
  22. F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993) CrossRefADSGoogle Scholar
  23. D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal UniversityBeijingP.R. China
  2. 2.Beijing Radiation CenterBeijingP.R. China
  3. 3.Shanghai Institute of Applied PhysicsShanghaiP.R. China

Personalised recommendations