Advertisement

The European Physical Journal D

, Volume 43, Issue 1–3, pp 205–208 | Cite as

Reactivity of anionic gold oxide clusters towards CO: experiment and theory

  • M. L. Kimble
  • N. A. Moore
  • A. W. CastlemanJr
  • C. Bürgel
  • R. Mitrić
  • V. Bonačić-KouteckýEmail author
Cluster Reactivity and Nano-catalysis

Abstract.

In this paper, we present results from our joint experimental and theoretical study of the reactivity of anionic gold oxide clusters Au2,3O1-4 - towards CO. We provide clear evidence that, although O–O bond weakening/dissociation is important to enable CO oxidation, the presence of atomic oxygen can be favorable but is not always sufficient. Furthermore, we show that with the addition of a single gold atom the reactivity channels can be changed. As a consequence, in contrast to CO oxidation in the case of anionic gold dimer oxides, association of CO or replacement of O2 by CO become the dominant reaction channels for Au3On -. This demonstrates the nonscalable properties of gold clusters in the size regime in which each atom counts.

PACS.

31.15.Qg Molecular dynamics and other numerical methods 31.15.Ar Ab initio calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Haruta, Catal. Today 36, 153 (1997) CrossRefGoogle Scholar
  2. M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115, 301 (1989) CrossRefGoogle Scholar
  3. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, J. Catal. 144, 175 (1993) CrossRefGoogle Scholar
  4. M. Daté, M. Haruta, J. Catal. 201, 221 (2001) CrossRefGoogle Scholar
  5. G.C. Bond, D.T. Thompson, Catal. Rev.-Sci. Eng. 41, 319 (1999) CrossRefGoogle Scholar
  6. T.M. Bernhardt, Int. J. Mass. Spectrom. 243, 1 (2005) CrossRefGoogle Scholar
  7. A. Sanchez, S. Abbet, U. Heiz, W.D. Schneider, H. Häkkinen, R.N. Barnett, U. Landman, J. Phys. Chem. A 103, 9573 (1999) CrossRefGoogle Scholar
  8. H.S. Oh, C.K. Costello, C. Cheung, H.H. Kung, M.C. Kung, Stud. Surf. Sci. Catal. 139, 375 (2001) CrossRefGoogle Scholar
  9. C.K. Costello, H.H. Kung, M.C. Kung, J. Catal. 216, 425 (2003) CrossRefGoogle Scholar
  10. L. Fu, N.Q. Wu, J.H. Yang, F. Qu, D.L. Johnson, M.C. Kung, H.H. Kung, V.P. Dravid, J. Phys. Chem. B 109, 3704 (2005) CrossRefGoogle Scholar
  11. M.L. Kimble, A.W. Castleman Jr, R. Mitrić, C. Bürgel, V. Bonačić-Koutecký, J. Am. Chem. Soc. 126, 2526 (2004) CrossRefGoogle Scholar
  12. R.C. Bell, K.A. Zemski, D.R. Justes, A.W. Castleman Jr, J. Chem. Phys. 114, 798 (2001) CrossRefADSGoogle Scholar
  13. A.D. Becke, Phys. Rev. A 98, 3098 (1988) CrossRefADSGoogle Scholar
  14. A.D. Becke, J. Chem. Phys. 98, 5648 (1993) CrossRefADSGoogle Scholar
  15. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990) CrossRefGoogle Scholar
  16. W.T. Wallace, R.B. Wyrwas, R.L. Whetten, R. Mitrić, V. Bonačić-Koutecký, J. Am. Chem. Soc. 125, 8408 (2003) CrossRefGoogle Scholar
  17. M.L. Kimble, N.A. Moore, G.E. Johnson, A.W. Castleman Jr, C. Bürgel, R. Mitrić, V. Bonačić-Koutecký, J. Chem. Phys. 125, 204311 (2006) CrossRefADSGoogle Scholar
  18. L.D. Socaciu, J. Hagen, T.M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, U. Landman, J. Am. Chem. Soc. 125, 10437 (2003) CrossRefGoogle Scholar
  19. V. Bonačić-Koutecký, R. Mitrić, C. Bürgel, B. Schäfer-Bung, Comput. Mat. Sci. 35, 151 (2006) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • M. L. Kimble
    • 1
  • N. A. Moore
    • 1
  • A. W. CastlemanJr
    • 1
  • C. Bürgel
    • 2
  • R. Mitrić
    • 2
  • V. Bonačić-Koutecký
    • 2
    Email author
  1. 1.Departments of Chemistry and PhysicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Humboldt-Universität zu Berlin, Institut für ChemieBerlinGermany

Personalised recommendations