The European Physical Journal D

, Volume 43, Issue 1–3, pp 247–250 | Cite as

Embedding atom-jellium model for metal surface

  • L.-L. Wang
  • H.-P. ChengEmail author
Electronic Structure and Quantum Effects in Low Dimensional Systems


To describe metal surfaces efficiently and accurately, an embedding atom-jellium model is proposed. Within density functional theory, we consider a multiscale scheme that combines jellium and atomistic approaches. We use the former to model layers deep inside a metal surface to reduce the computational cost and the later to maintain the accuracy required for chemical bonding. Work functions of Al(111) and Cu(111) surfaces are studied using this model with comparisons to all-atom and pure jellium models. The much closer results of the embedding atom-jellium model to the all-atom results than to the pure jellium results show a good prospect for our approach in large-scale density functional calculations.


71.15.Dx Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction) 73.21.Ac Multilayers 73.30.+y Surface double layers, Schottky barriers, and work functions  


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Bardeen, Phys. Rev. 49, 653 (1936) CrossRefADSGoogle Scholar
  2. N.D. Lang, Solid State Commun. 7, 1047 (1969) CrossRefGoogle Scholar
  3. N.D. Lang, W. Kohn, Phys. Rev. B 3, 1215 (1971) CrossRefADSGoogle Scholar
  4. P. Hohenberg, W. Kohn, Phys. Rev. B 136, B864 (1964) Google Scholar
  5. W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965) CrossRefADSMathSciNetGoogle Scholar
  6. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992) CrossRefADSGoogle Scholar
  7. W.L. Yang, V. Brouet, X.J. Zhou, H.J. Choi, S.G. Louie, M.L. Cohen, S.A. Kellar, P.V. Bogdanov, A. Lanzara, A. Goldoni, F. Parmigiani, Z. Hussain, Z.X. Shen, Science 300, 303 (2003) CrossRefADSGoogle Scholar
  8. L.-L. Wang, H.-P. Cheng, Phys. Rev. B 69, 045404 (2004) CrossRefADSGoogle Scholar
  9. O. Gunnarsson, B.I. Lundqvist, H. Hjelmberg, Phys. Rev. Lett. 37, 292 (1976) CrossRefADSGoogle Scholar
  10. D.L. Price, J.W. Halley, Phys. Rev. B 38, 9357 (1988) CrossRefADSMathSciNetGoogle Scholar
  11. E. Ogando, N. Zabala, E.V. Chulkov, M.J. Puska, Phys. Rev. B 71, (2005) Google Scholar
  12. G. Makov, M.C. Payne, Phys. Rev. B 51, 4014 (1995) CrossRefADSGoogle Scholar
  13. J. Ihm, A. Zunger, M.L. Cohen, J. Phys. C-Solid State Phys. 12, 4409 (1979) CrossRefADSGoogle Scholar
  14. M. Bockstedte, A. Kley, J. Neugebauer, M. Scheffler, Comp. Phys. Commun. 107, 187 (1997) zbMATHCrossRefADSGoogle Scholar
  15. G. Kresse, J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  16. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) CrossRefADSGoogle Scholar
  17. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990) CrossRefADSGoogle Scholar
  18. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) CrossRefADSMathSciNetGoogle Scholar
  19. F.K. Schulte, Surf. Sci. 55, 427 (1976) CrossRefGoogle Scholar
  20. N.W. Ashcroft, D.C. Langreth, Phys. Rev. 155, 682 (1967) CrossRefADSGoogle Scholar
  21. R. Monnier, J.P. Perdew, Phys. Rev. B 17, 2595 (1978) CrossRefADSGoogle Scholar
  22. A. Kiejna, Phys. Rev. B 43, 14695 (1991) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Physics and Quantum Theory ProjectUniversity of FloridaGainesvilleUSA
  2. 2.Department of Materials Science and Engineeringand the Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations