Advertisement

The European Physical Journal D

, Volume 43, Issue 1–3, pp 299–302 | Cite as

Anisotropically DNA-functionalized nanoparticle dimers

  • B. Högberg
  • H. OlinEmail author
Nano-crystals and Self-assembly

Abstract.

Self-assembly of complex, non-periodic nanostructures can only be achieved by using anisotropic building-blocks. The building blocks need to have at least four bonds pointing in separate directions [J. Comput. Theor. Nanosci. 3, 391 (2006)]. We have previously presented a method for the synthesis of such building-blocks using DNA-functionalized gold nanoparticles. Here, we report on the progress in the experimental realization of this scheme. The first goal, in a process to make programmable self-assembly building-blocks using nanoparticles, is the production of dimers with different DNA-functions on the two component particles. We report on the fabrication of anisotropically functionalized dimers of nanoparticles of two different sizes. As a result of their anisotropy, these demonstrator building blocks can be made to assemble into spherical structures.

PACS.

81.16.Dn Self-assembly 81.16.Rf Nanoscale pattern formation 82.39.Pj Nucleic acids, DNA and RNA bases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Technology Roadmap for Nanoelectronics, European Commission, edited by R. Compañó (Office for Official Publications of the European Communities, Luxemburg, 2001) Google Scholar
  2. P.W.K. Rothemund, N. Papadakis, E. Winfree, Plos. Biology 2, 2041 (2004) CrossRefGoogle Scholar
  3. P.W.K. Rothemund, Nature 440, 297 (2006) CrossRefADSGoogle Scholar
  4. A.P. Alivisatos, K.P. Johnsson, X.G. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez, P.G. Schultz, Nature 382, 609 (1996) CrossRefADSGoogle Scholar
  5. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382, 607 (1996) CrossRefADSGoogle Scholar
  6. J.D. Le, Y. Pinto, N.C. Seeman, K. Musier-Forsyth, T.A. Taton, R.A. Kiehl, Nano Lett. 4, 2343 (2004) CrossRefGoogle Scholar
  7. B. Högberg, H. Olin, J. Comput. Theor. Nanosci. 3, 391 (2006) Google Scholar
  8. Z. Bao, L. Chen, M. Weldon, E. Chandross, O. Cherniavskaya, Y. Dai, J.H. Tok, Chem. Mat. 14, 24 (2002) CrossRefGoogle Scholar
  9. B. Högberg, H. Olin, in Proc. 2nd Conf. Found. Nanosci. (ScienceTechnica, Snowbird, Utah, 2005), pp. 219–226 Google Scholar
  10. B. Högberg, J. Helmersson, S. Holm, H. Olin, Appl. Surf. Sci. 252, 5538 (2006) CrossRefADSGoogle Scholar
  11. G. Schmid, A. Lehnert, Angew. Chem. 28, 780 (1989) CrossRefGoogle Scholar
  12. D. Zanchet, C.M. Micheel, W.J. Parak, D. Gerion, S.C. Williams, A.P. Alivisatos, J. Phys. Chem. B 106, 11758 (2002) CrossRefGoogle Scholar
  13. L.M. Demers, C.A. Mirkin, R.C. Mucic, R.A. Reynolds, R.L. Letsinger, R. Elghanian, G. Viswanadham, Analyt. Chem. 72, 5535 (2000) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Engineering Physics and MathematicsMid Sweden UniversitySundsvallSweden

Personalised recommendations