Advertisement

The European Physical Journal D

, Volume 43, Issue 1–3, pp 225–228 | Cite as

Magnetism in artificial lattices

  • K. KärkkäinenEmail author
  • M. Borgh
  • M. Manninen
  • S. M. Reimann
Electronic Structure and Quantum Effects in Low Dimensional Systems

Abstract.

We compare magnetism in two artificial lattice structures, a quantum dot array formed in a two-dimensional electron gas and an optical lattice loaded with repulsive, contact-interacting fermionic atoms. When the tunneling between the lattice sites is strong, both lattices are non-magnetic. With reduced tunneling in the tight-binding limit, the shell-filling of the single-site quantum wells combined with Hund's rule determines the magnetism. This leads to a systematic magnetic phase diagram with non-magnetic, ferromagnetic and antiferromagnetic phases.

PACS.

75.75.+a Magnetic properties of nanostructures 03.75.Ss Degenerate Fermi gases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002) CrossRefADSGoogle Scholar
  2. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995) CrossRefADSGoogle Scholar
  3. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995) CrossRefADSGoogle Scholar
  4. P. Verkerk, B. Lounis, C. Salomon, C. Cohen-Tannoudji, J.-Y. Courtois, G. Grynberg, Phys. Rev. Lett. 68, 3861 (1992) CrossRefADSGoogle Scholar
  5. G. Raithel, G. Birkl, A. Kastberg, W.D. Phillips, S.L. Rolston, Phys. Rev. Lett. 78, 630 (1997) CrossRefADSGoogle Scholar
  6. G. Modugno, F. Ferlaino, R. Heidemann, G. Roati, M. Inguscio, Phys. Rev. A 68, 011601(R) (2003) CrossRefADSGoogle Scholar
  7. H. Feshbach, Ann. Phys. 5, 337 (1958) ADSMathSciNetGoogle Scholar
  8. D. Jaksch, C. Brunder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998) CrossRefADSGoogle Scholar
  9. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002) CrossRefADSGoogle Scholar
  10. M. Köhl, H. Moritz,T. Stöferle, K. Günter, T. Esslinger, Phys. Rev. Lett. 94, 080403 (2005) CrossRefGoogle Scholar
  11. J. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963) ADSCrossRefGoogle Scholar
  12. S. Viefers, P. Koskinen, P. Singha Deo, M. Manninen, Physica E 21, 1 (2004) CrossRefADSGoogle Scholar
  13. J. Kolehmainen, S.M. Reimann, M. Koskinen, M. Manninen, Eur. Phys. J. B 13, 731 (2000) CrossRefADSGoogle Scholar
  14. M. Koskinen, S.M. Reimann, M. Manninen, Phys. Rev. Lett. 90, 066802 (2003) CrossRefADSGoogle Scholar
  15. F. Werner, O. Parcollet, A. Georges, S.R. Hassan, Phys. Rev. Lett. 95, 056401 (2005) CrossRefADSGoogle Scholar
  16. E. Altman, E. Delmer, M.D. Lukin, Phys. Rev. A 70, 013603 (2004) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • K. Kärkkäinen
    • 1
    Email author
  • M. Borgh
    • 1
  • M. Manninen
    • 2
  • S. M. Reimann
    • 1
  1. 1.Mathematical Physics, LTH, Lund UniversityLundSweden
  2. 2.NanoScience Center, Department of PhysicsUniversity of JyväkyläJyväkyläFinland

Personalised recommendations