Advertisement

The European Physical Journal D

, Volume 43, Issue 1–3, pp 177–180 | Cite as

In situ TEM observation of synergistic electronic-excitation-effects of phase stability in III-V binary compound nanoparticles

  • H. YasudaEmail author
  • A. Tanaka
  • H. Usui
  • H. Mori
  • J. G. Lee
Clusters and Surfaces

Abstract.

Electronic-excitation-effects of phase stability in III-V binary compound nanoparticles have been studied by TEM. When GaSb particles were excited by 75 keV electrons, the compound transforms to a two-phase consisting of an antimony core and a gallium shell or an amorphous phase, or remains the original crystalline phase, depending on particle size and/or temperature. It is suggested that such nonlinear responses of the phase stability may arise from synergistic effects of bond instability under excited states, formation of high density of excited states, chemical equilibrium under excited states and temperature dependence of defects mobility.

PACS.

61.80.-x Physical radiation effects, radiation damage 81.30.-t Phase diagrams and microstructures developed by solidification and solid-solid phase transformations 64.75.+g Solubility, segregation, and mixing; phase separation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Koshihara et al., J. Phys. Chem. B 103, 2592 (1999) CrossRefGoogle Scholar
  2. S. Iwai et al., Phys. Rev. Lett. 88, 057402 (2002) CrossRefADSGoogle Scholar
  3. A. Schmid, P. Braunlich, P.K. Rol, Phys. Rev. Lett. 35, 1382 (1975) CrossRefADSGoogle Scholar
  4. A.D. Townsend et al., Rad. Effects 30, 55 (1976) Google Scholar
  5. J. Kanasaki et al., Phys. Rev. Lett. 89, 257601 (2002) CrossRefADSGoogle Scholar
  6. J.W. Corbett, Electron Radiation Damage in Semiconductors and Metals (Academic Press, NY, 1966) Google Scholar
  7. H. Yasuda, H. Mori, J.G. Lee, Phys. Rev. Lett. 92, 135501 (2004) CrossRefADSGoogle Scholar
  8. H. Yasuda, H. Mori, J.G. Lee, Phys. Rev. B 70, 214105-1 (2004) CrossRefADSGoogle Scholar
  9. H. Yasuda et al., Eur. Phys. J. D 37, 231 (2006) CrossRefADSGoogle Scholar
  10. H. Yasuda, H. Mori, Phys. Rev. Lett. 69, 3747 (1992) CrossRefADSGoogle Scholar
  11. H. Yasuda, H. Mori, Z. Phys. D 31, 131 (1994) CrossRefGoogle Scholar
  12. H. Yasuda, K. Furuya, Eur. Phys. J. D 10, 279 (2000) CrossRefADSGoogle Scholar
  13. J. Kanasaki et al., Phys. Rev. Lett. 70, 2495 (1993) CrossRefADSGoogle Scholar
  14. J. Singh, N. Itoh, Y. Nakai, J. Kanasaki, A. Okano, Phys. Rev. B 50, 11370 (1994) Google Scholar
  15. O. Pankratov, M. Scheffler, Phys. Rev. Lett. 75, 701 (1995) CrossRefADSGoogle Scholar
  16. E. Rabinowitz, Friction and Wear of Materials (John Wiley & Sons, 1965) Google Scholar
  17. H. Yasuda, K. Furuya, Eur. Phys. J. D 10, 279 (2000) CrossRefADSGoogle Scholar
  18. H. Yasuda, H. Mori, J. Cryst. Growth 237/239, 234 (2002) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • H. Yasuda
    • 1
    Email author
  • A. Tanaka
    • 1
  • H. Usui
    • 1
  • H. Mori
    • 2
  • J. G. Lee
    • 2
  1. 1.Department of Mechanical EngineeringKobe UniversityKobeJapan
  2. 2.Research Center for Ultra-High Voltage Electron Microscopy, Osaka UniversityOsakaJapan

Personalised recommendations