Advertisement

The European Physical Journal D

, Volume 43, Issue 1–3, pp 283–286 | Cite as

Anisotropic growth of indium antimonide nanostructures

  • J. F. Zhou
  • Z. Chen
  • L. B. He
  • C. H. Xu
  • L. Yang
  • M. HanEmail author
  • G. H. Wang
Nano-crystals and Self-assembly

Abstract.

InSb nanostructures have been synthesized by the use of gas aggregation process. Nanoparticles with different shapes are obtained by controlling the growth and deposition temperature of the InSb nanoclusters. Triangular nanocrystals are commonly observed when the clusters are extracted from the condensation chamber of the source and deposited on the room temperature substrate at high vacuum. When the deposition is performed inside the condensation chamber at high temperature near the melting point of bulk InSb, nanoparticles formed on the substrate surface show several kinds of 3-dimensional morphologies, such as triangular or rectangular prisms, as well as hexagonal tablets. Keeping the same conditions for the cluster source operation and deposition, after long time growth, nanorods with hexagonal and quadrangular cross sections are formed through vapor-liquid-solid (VLS) process. The origin of the difference on the morphologies and shapes of the nanostructures is attributed to the anisotropic growth of InSb, which is temperature dependent.

PACS.

61.46.-w Nanoscale materials 81.07.-b Nanoscale materials and structures: fabrication and characterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.S. Rao, J.B. Webb, D.C. Houghton, J.M. Baribeau, W.T. Moore, J.P. Noad, Appl. Phys. Lett. 53, 51 (1988) CrossRefADSGoogle Scholar
  2. J.-L. Chyi, S. Kalem, N.S. Kumar, C.W. Litton, H. Morkoc, Appl. Phys. Lett. 53, 1092 (1988) CrossRefADSGoogle Scholar
  3. J.-L. Chyi, D. Biswas, S.V. Iyer, N.S. Kumar, H. Morkoc, H.Y. Lee, H. Chen, Appl. Phys. Lett. 54, 1016 (1989) CrossRefADSGoogle Scholar
  4. Y. Qiu, D. Uhl, Appl. Phys. Lett. 84, 1510 (2004) CrossRefADSGoogle Scholar
  5. E. Alphandery, R.J. Nicholas, N.J. Mason, B. Zhang, P. Moeck, G.R. Booker, Appl. Phys. Lett. 74, 2041 (1999) CrossRefADSGoogle Scholar
  6. T. Ulzmeier, P.A. Postiga, J. Tamayo, R. Garcia, F. Briones, Appl. Phys. Lett. 69, 2674 (1996) CrossRefADSGoogle Scholar
  7. Y.D. Li, Z.Y. Wang, X.F. Duan, G.H. Zhang, C. Wang, Adv. Mat. 13, 145 (2001) CrossRefGoogle Scholar
  8. D. Besson, M. Treilleux, A. Hoareau, C. Esnouf, Mat. Sci. Eng. B 90, 123 (2002) CrossRefGoogle Scholar
  9. S.V. Zaitsev-Zotov, Y.A. Kumzerov, Y.A. Firsov, P. Monceau, J. Phys.: Condens. Matter 12, L303 (2000) Google Scholar
  10. F. Krok, J.J. Kolodziej, B. Such, P. Piatkowski, M. Szymonski, Nucl. Instr. Meth. Phys. Res. B 212, 264 (2003) CrossRefADSGoogle Scholar
  11. J.F. Zhou, Z.L. Li, Y.F. Chen, G.H. Wang, M. Han, Sol. Stat. Comm. 133, 271 (2005) CrossRefADSGoogle Scholar
  12. K.G. Guenther, H. Freller, Z. Naturforsch. A 16, 279 (1961) Google Scholar
  13. R. Noetzel, J. Temmyo, T. Tamamura, Nature 369, 131 (1994) CrossRefADSGoogle Scholar
  14. R. Noetzel, J. Temmyo, H. kamada, T. Furuta, Appl. Phys. Lett. 65, 457 (1994) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • J. F. Zhou
    • 1
  • Z. Chen
    • 1
  • L. B. He
    • 1
  • C. H. Xu
    • 1
  • L. Yang
    • 1
  • M. Han
    • 1
    Email author
  • G. H. Wang
    • 1
  1. 1.National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing UniversityNanjingP.R. China

Personalised recommendations