The European Physical Journal D

, Volume 43, Issue 1–3, pp 143–146 | Cite as

Formation of single-wall carbon nanotubes in Ar and nitrogen gas atmosphere by using laser furnace technique

Fullerenes, Nanotubes and Nanowires

Abstract.

The formation of single-wall carbon nanotubes (SWNTs) by using laser vaporization technique in different ambient gas atmosphere was investigated. SWNTs were prepared with Rh/Pd (1.2/1.2 atom%)-carbon composite rod in Ar and nitrogen gas atmosphere, respectively. Raman spectra of raw carbon materials including SWNTs and photoluminescence mapping of dispersed SWNTs in a surfactant solution demonstrate that the diameter distribution of SWNTs prepared in Ar atmosphere is narrower than those obtained by using CVD technique (e.g. HiPco nanotube), even when the ambient temperature is as high as 1150 C. It was also found that nitrogen atmosphere gives wider diameter distribution of SWNTs than that obtained with Ar atmosphere. Furthermore, the relative yield of fullerenes (obtained as byproducts) is investigated by using HPLC (high-performance liquid chromatography) technique. It was found that the relative yield of higher fullerenes becomes lower, when nitrogen is used as an ambient gas atmosphere. Based on these experimental findings, a plausible formation mechanism of SWNTs is discussed.

PACS.

36.40.-c Atomic and molecular clusters 61.46.Df Nanotubes 81.05.Tp Fullerenes and related materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima, T. Ichihashi, Nature 363, 603 (1993) CrossRefADSGoogle Scholar
  2. D.S. Bethune, C.H. Chiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605 (1993) CrossRefADSGoogle Scholar
  3. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Linzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fisher, R.E. Smalley, Science 273, 483 (1996) CrossRefADSGoogle Scholar
  4. P. Nikolaev, M.J. Bronikovski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Chem. Phys. Lett. 313, 91 (1999) CrossRefGoogle Scholar
  5. B. Kitiyanan, W.E. Alvarez, J.H. Harwell, D.E. Resasco, Chem. Phys. Lett. 317, 497 (2000) CrossRefGoogle Scholar
  6. S. Maruyama, R. Kojima, Y. Miyaushi, S. Chiashi, M. Kohno, Chem. Phys. Lett. 360, 229 (2002) CrossRefGoogle Scholar
  7. T. Saito, S. Oshima, W.C. Xu, H. Ago, M. Yumura, S. Iijima, J. Phys. Chem. 109, 10647 (2005) Google Scholar
  8. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306, 1362 (2004) CrossRefADSGoogle Scholar
  9. G.G. Tibbetts, J. Cryst. Growth 66, 632 (1984); H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 260, 471 (1996) CrossRefGoogle Scholar
  10. Y. Chai, T. Guo, C.M. Jin, R.E. Haufler, L.P.F. Chibante, J. Fure, L.H. Wang, J.M. Alford, R.E. Smalley, J. Phys. Chem. 95, 7564 (1991) CrossRefGoogle Scholar
  11. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Linzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fisher, R.E. Smalley, Science 273, 483 (1996) CrossRefADSGoogle Scholar
  12. T. Wakabayashi, K. Kikuchi, S. Suzuki, H. Shiromaru, Y. Achiba, J. Phys. Chem. 98, 3390 (1994); T. Wakabayashi, Ph.D. thesis, Tokyo Metropolitan University, 1995 CrossRefGoogle Scholar
  13. S. Suzuki, H. Yamaguchi, T. Ishigaki, R. Sen, H. Kataura, W. Krätschmer, Y. Achiba, Eur. Phys. J. D 16, 369 (2001); T. Ishigaki, S. Suzuki, H. Kataura, W. Krätschmer, Y. Achiba, Appl. Phys. A 70, 121 (2000) CrossRefADSGoogle Scholar
  14. H. Kataura, Y. Kumazawa, N. Kojima, Y. Maniwa, I. Umezu, S. Masubuchi, S. Kazama, Y. Ohtsuka, S. Suzuki, Y. Achiba, Carbon 38, 1691 (2000) CrossRefGoogle Scholar
  15. S.M. Bachilo, M.S. Strano, C. Kittrel, R.H. Hauge, R.E. Smalley, R.B. Weisman, Science 298, 2361 (2002); R.B. Weisman, S.M. Bachilo, Nano Lett. 1235 (2003) CrossRefADSGoogle Scholar
  16. S.M. Bachilo, L. Balzano, J.E. Herrera, F. Pompeo, D.E. Resasco, R.B. Weisman, J. Am. Chem. Soc. 125, 11186 (2003); Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama, Chem. Phys. Lett. 387, 198 (2004) CrossRefGoogle Scholar
  17. D. Nishide, H. Kataura, S. Suzuki, K. Tsukagoshi, Y. Aoyagi, Y. Achiba, Chem. Phys. Lett. 372, 45 (2003) CrossRefGoogle Scholar
  18. Y. Makita, S. Suzuki, H. Kataura, Y. Achiba, Eur. Phys. J. D 34, 287 (2005) CrossRefADSGoogle Scholar
  19. Y. Ohtsuka, Master Dissertation, Tokyo Metropolitan University, 1999 Google Scholar
  20. S. Suzuki, Fullerene-Related Materials, edited by S. Margadonna (Springer, 2007) Google Scholar
  21. unpublished result Google Scholar
  22. R. Sen, S. Suzuki, H. Kataura, Y. Achiba, Chem. Phys. Lett. 349, 383 (2001) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of ChemistryTokyo Metropolitan UniversityTokyoJapan
  2. 2.Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan

Personalised recommendations