Advertisement

The European Physical Journal D

, Volume 43, Issue 1–3, pp 49–52 | Cite as

Homogeneous and heterogeneous clustering in the accretion regime

  • P. Feiden
  • J. LeygnierEmail author
  • Ph. Cahuzac
  • C. Bréchignac
Structure and Thermodynamics of Free Clusters

Abstract.

Condensation of nano-droplets in a supersaturating vapor decomposes in two steps: the formation of a nucleation center, also called critical nuclei or nucleation seed, and the growth sequence, by accretion of further atoms on the nucleation center. These two steps have been investigated separately through the clustering of homogeneous particles Nan and heterogeneous particles NanX in a helium buffer gas (X = (Na2O)2 or (NaOH)2). The growth sequence is analyzed with preformed molecules X injected in a supersaturating sodium vapor and driving production of NanX clusters. Cluster distribution mean sizes are controlled by sodium concentration and by the condensation cell effective length. The signal intensities observed for homogeneous and heterogeneous clusters are proportional to the homogeneous and heterogeneous nucleation center numbers respectively. We can measure the efficiency for the homogeneous nucleation center production versus sodium concentration. This process is the onset of the condensation phase transition.

PACS.

36.40.-c Atomic and molecular clusters 36.40.Jn Reactivity of clusters 36.40.Sx Diffusion and dynamics of clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Levin, E. Ganor, V. Gladstein, J. Appl. Meteorology 35, 1511 (1996) CrossRefADSGoogle Scholar
  2. M.V. Schmoluchowski, Z. Phys. 17, 585 (1916) Google Scholar
  3. J. Frenkel, Z. Phys 26, 117 (1924) CrossRefGoogle Scholar
  4. R. Becker, W. Döring, Ann. Phys. 24, 719 (1935) zbMATHCrossRefGoogle Scholar
  5. T.A. Ring, Adv. Coll. Interf. Sci. 91, 473 (2001) CrossRefGoogle Scholar
  6. D.W. Oxtoby, Acc. Chem. Res. 31, 91 (1998) CrossRefGoogle Scholar
  7. J.S. Bhatt, I.J. Ford, J. Chem. Phys. 118, 3166 (2003) CrossRefADSGoogle Scholar
  8. J.A.D. Wattis, C.D. Bolton, P.V. Coveney, J. Phys. A 37, 2895 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. D.B. Duncan, A.R. Soheili, Appl. Num. Math. 37, 1 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  10. M. Brack, Rev. Mod. Phys. 65, 677 (1993) CrossRefADSGoogle Scholar
  11. W.A. de Herr, Rev. Mod. Phys. 65, 611 (1993) CrossRefADSGoogle Scholar
  12. J.M. Soler, N. García, O. Echt, K. Sattler, E. Recknagel, Phys. Rev. Lett. 49, 1857 (1982) CrossRefADSGoogle Scholar
  13. J. Yang, B.J. Mc Coy, G. Madras, J. Chem. Phys. 124, 024713 (2006) CrossRefGoogle Scholar
  14. C. Bobbert, C.P. Schulz, Eur. Phys. J. D 16, 95 (2001) CrossRefADSGoogle Scholar
  15. C. Bréchignac, Ph. Cahuzac, J.Ph. Roux, D. Pavolini, F. Spiegelmann, J. Chem. Phys. 87, 5694 (1987) CrossRefADSGoogle Scholar
  16. C. Bréchignac, Ph. Cahuzac, J.Ph. Roux, J. Chem. Phys. 87, 229 (1987) CrossRefADSGoogle Scholar
  17. Thermochemical properties of inorganic substances, edited by O. Knacke, O. Kubaschewski, K. Hesselmann, 2nd edn. (Springer Verlag, 1991) Google Scholar
  18. P. Feiden, J. Leygnier, Ph. Cahuzac, C. Bréchignac, Chem. Phys. Lett. 432, 230 (2006) CrossRefADSGoogle Scholar
  19. A. Goerke, G. Leipelt, H. Palm, C.P. Schulz, I.V. Hertel, Z. Phys. D 32, 311 (1995) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • P. Feiden
    • 1
  • J. Leygnier
    • 1
    Email author
  • Ph. Cahuzac
    • 1
  • C. Bréchignac
    • 1
  1. 1.Laboratoire Aimé Cotton, C.N.R.S. UPR 3321, bâtiment 505, Université Paris-SudOrsay CedexFrance

Personalised recommendations