The European Physical Journal D

, Volume 43, Issue 1–3, pp 173–176 | Cite as

A new real-space algorithm for realistic density functional calculations

  • E. KrotscheckEmail author
  • E. R. Hernández
  • S. Janecek
  • M. S. Kaczmarski
  • R. Wahl
Clusters and Surfaces


We present the implementation of a fast real-space algorithm for density functional calculations for atomic nanoclusters. The numerical method is based on a fourth-order operator splitting technique for the solution of the Kohn-Sham equation [1]. The convergence of the procedure is about one order of magnitude better than that of previously used second-order operator factorizations. The method has now been extended to deal with non-local pseudopotentials of the Kleinman-Bylander [2] type, permitting calculations for realistic systems, without significantly degrading the convergence rate. We demonstrate the convergence of the method for the examples C and C60 and present examples of structure calculations of Na and Mg clusters.


71.15.Mb Density functional theory, local density approximation, gradient and other corrections 61.46.Bc Clusters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965) CrossRefADSMathSciNetGoogle Scholar
  2. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982) CrossRefADSGoogle Scholar
  3. T.L. Beck, Rev. Mod. Phys. 72, 1041 (2000) CrossRefADSGoogle Scholar
  4. M. Aichinger, E. Krotscheck, Comput. Mat. Sci. 34, 188 (2005) CrossRefGoogle Scholar
  5. M. Suzuki, in Computer Simulation Studies in Condensed Matter Physics, edited by D.P. Landau, K.K. Mon, H.-B. Schüttler (Springer, Berlin, 1996), Vol. VIII, pp. 1–6 Google Scholar
  6. S.A. Chin, Phys. Lett. A 226, 344 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  7. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) CrossRefADSGoogle Scholar
  8. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) CrossRefADSGoogle Scholar
  9. M. Fuchs, M. Scheffler, Comp. Phys. Comm. 119, 67 (1999) zbMATHCrossRefADSGoogle Scholar
  10. X. Gonze et al., Comput. Mater. Sci. 25, 478 (2002) CrossRefGoogle Scholar
  11. T. Ono, K. Hirose, Phys. Rev. Lett. 82, 5016 (1999) CrossRefADSGoogle Scholar
  12. E.R. Hernández, S. Janecek, M.S. Kaczmarski, E. Krotscheck, An evolution-operator method for Density Functional Theory, 2006, (submitted) Google Scholar
  13. C. Fiolhas et al., Phys. Rev. B 51, 14001 (1995) CrossRefADSGoogle Scholar
  14. S. Kümmel, M. Brack, P.-G. Reinhard, Phys. Rev. B 58, R1774 (1998) Google Scholar
  15. I. Moullet, J.L. Martins, F. Reuse, J. Buttet, Phys. Rev. Lett. 65, 476 (1990) CrossRefADSGoogle Scholar
  16. I.A. Solov'yov, A. V. Solov'yov, W. Greiner, Phys. Rev. A 65, 053203 (2002) CrossRefADSGoogle Scholar
  17. A. Lyalin, I.A. Solov'yov, A.V. Solov'yov, W. Greiner, Phys. Rev. A 67, 063203 (2003) CrossRefADSGoogle Scholar
  18. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993) CrossRefADSGoogle Scholar
  19. J. Akola, K. Rytkönen, M. Manninen, Eur. Phys. J. D 16, 21 (2000) CrossRefADSGoogle Scholar
  20. F. Reuse, S.N. Khanna, V. de Coulon, J. Buttet, Phys. Rev. B 41, 11743 (1990) CrossRefADSGoogle Scholar
  21. C. Bréchignac, P. Cahuzac, J. Leygnier, J. Weiner, J. Chem. Phys. 90, 1492 (1989) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • E. Krotscheck
    • 1
    Email author
  • E. R. Hernández
    • 2
  • S. Janecek
    • 1
  • M. S. Kaczmarski
    • 2
    • 3
  • R. Wahl
    • 1
  1. 1.Institut für Theoretische Physik, Johannes Kepler UniversitätLinzAustria
  2. 2.Institut de Ciència de Materials de Barcelona (ICMAB–CSIC) Campus de BellaterraBarcelonaSpain
  3. 3.Institute of Physics, University of SilesiaKatowicePoland

Personalised recommendations