Advertisement

The European Physical Journal D

, Volume 43, Issue 1–3, pp 45–48 | Cite as

The energetics of large Lennard-Jones clusters: transition to the hexagonal close-packed structure

  • N. V. KrainyukovaEmail author
Structure and Thermodynamics of Free Clusters

Abstract.

The energetics of large multiply twined particles (MTPs) such as decahedra with fivefold symmetry, face-centred cubic (fcc) and hexagonal close-packed (hcp) clusters in size from 2000 to ~45000 atoms was numerically analysed. Clusters were relaxed freely under the Lennard-Jones pair potential to the energy minimum. The essential extension of size compared to previous studies and the additional shape-optimisation of hcp and fcc clusters as well as truncated decahedra appears to be of high importance in the potential energy analysis. The best-optimised decahedra were confirmed to be the most favourable structure from 2000 to ~105 atoms. Only in the short size interval, above N ∼10000 atoms, the best-optimised fcc clusters and simplest Marks' decahedra could alternate, while above N ∼14000 atoms does the shape-optimised hcp structure be proved to become more favourable for single crystal particles compared to the best-optimised fcc structure. Depending on shapes and sizes, decahedra and hcp clusters can alternate in the wide size interval above N ∼ 14000 atoms and presumably form the mixed abundances of clusters belonging to the both symmetries. Finally, the upper limit for stable MTPs was estimated to be about N ∼105 atoms, while above only the hcp clusters are the most favourable.

PACS.

61.46.-w Nanoscale materials 36.40.-c Atomic and molecular clusters 68.18.Fg Structure: measurements and simulations 68.35.Rh Phase transitions and critical phenomena 68.35.-p Solid surfaces and solid-solid interfaces: Structure and energetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.D. Marks, Philos. Mag. A 49, 81 (1984) Google Scholar
  2. A. Howie, L.D. Marks, Philos. Mag. A 49, 95 (1984) Google Scholar
  3. B.W. van de Waal, The FCC/HCP Dilemma (B. V. Febodruk, Enschede, 1997) Google Scholar
  4. B.W. van de Waal, J. Chem. Phys. 90, 3407 (1989) CrossRefADSGoogle Scholar
  5. B. Raoult et al., Philos. Mag. B 60, 881 (1989) Google Scholar
  6. B.W. van de Waal, J. Chem. Phys. 98, 4909 (1993) CrossRefADSGoogle Scholar
  7. J. Xie et al., J. Chem. Phys. 91, 612 (1989) CrossRefADSGoogle Scholar
  8. C.L. Cleveland et al., Z. Phys. D 40, 503 (1997) CrossRefGoogle Scholar
  9. C.L. Cleveland, U. Landman, J. Chem. Phys. 94, 7376 (1991) CrossRefADSGoogle Scholar
  10. C.L. Cleveland et al., Phys. Rev. Lett. 79, 1873 (1997) CrossRefADSGoogle Scholar
  11. C.L. Cleveland et al., Phys. Rev. Lett. 81, 2036 (1998) CrossRefADSGoogle Scholar
  12. C.L. Cleveland et al., Phys. Rev. B 60, 5065 (1999) CrossRefADSGoogle Scholar
  13. H.-S. Nam et al., Phys. Rev. Lett. 89, 275502 (2002) CrossRefGoogle Scholar
  14. T. Ikeshoji et al., Phys. Rev. E 63, 031101 (2001) CrossRefADSGoogle Scholar
  15. J. Farges et al., J. Chem. Phys. 78, 5067 (1983) CrossRefADSGoogle Scholar
  16. J. Farges et al., J. Chem. Phys. 84, 3491 (1986) CrossRefADSGoogle Scholar
  17. B.W. van de Waal et al., Chem. Phys. Lett. 331, 57 (2000) CrossRefGoogle Scholar
  18. O.G. Danylchenko et al., Fiz. Nizk. Temp. 30, 226 (2004) (Low Temp. Phys. 30, 166 (2004)) Google Scholar
  19. S.I. Kovalenko et al., Chem. Phys. Lett. 250, 309 (1996) CrossRefGoogle Scholar
  20. O.G. Danylchenko et al., 30, 986 (2004) (Low Temp. Phys. 30, 743 (2004)) CrossRefGoogle Scholar
  21. D. Reinhard et al., Phys. Rev. Lett. 79, 1459 (1997) CrossRefADSGoogle Scholar
  22. D. Reinhard et al., Phys. Rev. A 55, 7868 (1997) Google Scholar
  23. D. Reinhard et al., Phys. Rev. B 58, 4917 (1998) CrossRefADSGoogle Scholar
  24. H. Hofmeister, in Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa (American Scientific Publishers, Los Angeles, 2004), Vol. 3, pp. 431–452 Google Scholar
  25. L.D. Marks, Rep. Prog. Phys. 57, 603 (1994) CrossRefADSGoogle Scholar
  26. M. Gillet, Surf. Sci. 67, 139 (1977) CrossRefGoogle Scholar
  27. V. Kiryukhin et al., Phys. Rev. Lett. 79, 1774 (1997) CrossRefADSGoogle Scholar
  28. S.I. Kiselev et al., Phys. Rev. B 65, 024517 (2001) CrossRefGoogle Scholar
  29. E.P. Bernard et al., Phys. Rev. B 69, 104201 (2004) CrossRefADSGoogle Scholar
  30. D.W. Brown et al., Phys. Rev. Lett. 81, 1019 (1998) CrossRefADSGoogle Scholar
  31. P. Huber, K. Knorr, Phys. Rev. B 60, 12657 (1999) CrossRefADSGoogle Scholar
  32. T. Hofmann et al., J. Low Temp. Phys. 140, 91 (2005) CrossRefGoogle Scholar
  33. D.E. Silva et al., Phys. Rev. Lett. 88, 155701 (2002) CrossRefADSGoogle Scholar
  34. D. Wallacher et al., J. Low Temp. Phys. 122, 313 (2001) CrossRefGoogle Scholar
  35. B. Schäfer et al., Mol. Phys. 89, 1057 (1996) CrossRefGoogle Scholar
  36. N.V. Krainyukova, B.W. van de Waal, Thin Solid Films 459, 169 (2004) CrossRefGoogle Scholar
  37. N.V. Krainyukova, Surf. Interf. Anal. 38, 469 (2006) CrossRefGoogle Scholar
  38. N.V. Krainyukova, Thin Solid Films 515, 1658 (2006) CrossRefGoogle Scholar
  39. J.E. Jones, A.E. Ingham, Proc. R. Soc. Lond. A 107, 636 (1925) ADSGoogle Scholar
  40. Rare Gas Solids, edited by M.L. Klein, J.A. Venables (Academic Press, London, 1976) Google Scholar
  41. B.G. Bagley, Nature 208, 674 (1965) CrossRefADSGoogle Scholar
  42. S. Ino, J. Phys. Soc. Jpn 27, 941 (1969) CrossRefADSGoogle Scholar
  43. T.P. Martin, Phys. Rep. 273, 199 (1996) CrossRefADSGoogle Scholar
  44. S. Prasalovich et al., J. Chem. Phys. 123, 084317 (2005) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute for Low Temperature Physics and Engineering NASUKharkovUkraine

Personalised recommendations