Advertisement

The European Physical Journal D

, Volume 43, Issue 1–3, pp 109–112 | Cite as

Changing the fragmentation pattern of molecules in helium nanodroplets by co-embedding with water

  • Y. Ren
  • R. Moro
  • V. V. KresinEmail author
Helium Clusters and Spectroscopy

Abstract.

Individual amino acid molecules embedded in helium nanodroplets fragment extensively when the beam is ionized by electron bombardment. However, we find that when glycine and tryptophan are picked up right after, or right before, a small amount of water, the mass spectra become significantly altered. For glycine, the detected ions consist almost entirely of intact protonated amino acids, with or without a few water molecules attached. In other words, the presence of water exerts a striking “buffering” effect on the ionization-induced fragmentation. For tryptophan the effect is weaker but also present. In both cases, the hydroxyl group lost upon ionization overwhelmingly comes from the water partner (in strong contrast to the situation observed when amino acids are picked up by neat water clusters). A complementary experiment involving DCl molecules co-embedded with water shows that in this case Cl and/or DCl invariably leave the droplet upon ionization. The observed patterns may be steered by the analytes' dipole moments or by solvation effects.

PACS.

36.40.Qv Stability and fragmentation of clusters 34.80.Ht Dissociation and dissociative attachment by electron impact 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Toennies, A.F. Vilesov, Angew. Chem. Intern. Ed. 43, 2622 (2004) CrossRefGoogle Scholar
  2. F. Stienkemeier, K.K. Lehmann, J. Phys. B: At. Mol. Opt. Phys. 39, R127 (2006) Google Scholar
  3. A. Scheidemann, B. Schilling, J.P. Toennies, J. Phys. Chem. 97, 2128 (1993) CrossRefGoogle Scholar
  4. B.E. Callicoatt, D.D. Mar, V.A. Apkarian, K.C. Janda, J. Chem. Phys. 105, 7872 (1996) CrossRefADSGoogle Scholar
  5. M. Fárník, J.P. Toennies, J. Chem. Phys. 122, 014307 (2005) CrossRefGoogle Scholar
  6. S. Yang, S.M. Brereton, M.D. Wheeler, A.M. Ellis, Phys. Chem. Chem. Phys. 7, 4082 (2005) CrossRefGoogle Scholar
  7. F. Huisken, O. Werhahn, A.Yu. Ivanov, S.A. Krasnokutski, J. Chem. Phys. 111, 2978 (1999) CrossRefADSGoogle Scholar
  8. A. Lindinger, J.P. Toennies, A.F. Vilesov, J. Chem. Phys. 110, 1429 (1999) CrossRefADSGoogle Scholar
  9. NIST Mass Spec Data Center, “Mass Spectra”, in NIST Chemistry WebBook, NIST Standard Reference Database No. 69, edited by P. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, 2005), http://webbook.nist.gov/chemistry Google Scholar
  10. R. Moro, R. Rabinovich, V.V. Kresin, J. Chem. Phys. 123, 074301 (2005) CrossRefGoogle Scholar
  11. Glycine was purchased from VWR, deuterated glycine from Icon Services, tryptophan from Aldrich Google Scholar
  12. K. Aflatooni, B. Hitt, G.A. Gallup, P.D. Burrow, J. Chem. Phys. 115, 6489 (2001) CrossRefADSGoogle Scholar
  13. M. Lewerenz, B. Schilling, J.P. Toennies, J. Chem. Phys. 102, 8191 (1995) CrossRefADSGoogle Scholar
  14. R. Fröchtenicht, M. Kaloudis, M. Koch, F. Huisken, J. Chem. Phys. 105, 6128 (1996) CrossRefADSGoogle Scholar
  15. The number of picked-up water molecules is given by a Poisson distribution Toennies:2004, here typically centered at 〈n〉≈3, as evidenced by the maximum at (D2O)2D+ in Figures [SEE TEXT]B and [SEE TEXT]B. Google Scholar
  16. Increased background in the spectrum comes from picked-up fragments of diffusion pump oil abundant in this mass range. Google Scholar
  17. B.D. Kay, Ph.D. dissertation, University of Colorado at Boulder (1982) Google Scholar
  18. R. Moro, R. Rabinovich, V.V. Kresin, J. Chem. Phys. 124, 146102 (2006) CrossRefGoogle Scholar
  19. F.J. Lovas, Y. Kawashima, J.U. Grabow, R.D. Suenram, G.T. Fraser, E. Hirota, Astrophys. J. 455, L201 (1995) Google Scholar
  20. M. Yang, P. Senet, C. Van Alsenoy, Int. J. Quantum Chem. 101, 535 (2005) CrossRefGoogle Scholar
  21. J.K. Gregory, D.C. Clary, K. Liu, M.G. Brown, R.J. Saykally, Science 275, 814 (1997) CrossRefGoogle Scholar
  22. E.W. Kaiser, J. Chem. Phys. 53, 1686 (1970) CrossRefGoogle Scholar
  23. R. Antoine, I. Compagnon, D. Rayane, M. Broyer, Ph. Dugourd, G. Breaux, F.C. Hagemeister, D. Pippen, R.R. Hudgins, M.F. Jarrold, Eur. Phys. J. D 20, 583 (2002) CrossRefADSGoogle Scholar
  24. W.K. Lewis, C.M. Lindsay, R.J. Bemish, R.E. Miller, J. Am. Chem. Soc. 127, 7235 (2005) CrossRefGoogle Scholar
  25. K. Nauta, R.E. Miller, Science 287, 293 (2000) CrossRefADSGoogle Scholar
  26. C.J. Burnham, S.S. Xantheas, M.A. Miller, B.E. Applegate, R.E. Miller, J. Chem. Phys. 117, 1109 (2002) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations