The European Physical Journal D

, Volume 43, Issue 1–3, pp 41–44 | Cite as

Photoinduced dissociation reactions of silver fluoride cluster ions

  • N. Hori
  • A. Furuya
  • M. Tsuruta
  • F. MisaizuEmail author
  • K. Ohno
Structure and Thermodynamics of Free Clusters


Photoinduced dissociation in the ultraviolet region has been investigated for Ag nF n-1 + cluster ions. Photodissociation spectrum of Ag2F+ in the energy of 3.8–5.6 eV exhibits several sharp bands corresponding to the transition to electronically excited states. In this dissociation, only the Ag2 + ion was observed as a fragment ion. Theoretical calculation indicates that the parent Ag2F+ ion has a linear Ag-F-Ag equilibrium geometries in the ground and excited states. Since conformational changes by excitation of bending vibration are necessary for the fragmentation of an F atom, this indicates that production of Ag2 + from Ag2F+ is a result of internal conversion and following conformational changes.


36.40.Mr Spectroscopy and geometrical structure of clusters 36.40.Qv Stability and fragmentation of clusters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B. Zemva, K. Lutar, A. Jesih, W.J. Casteel, A.P. Wilkinson, D.E. Cox, R.B. Von Dreele, H. Borrmann, N. Bartlett, J. Am. Chem. Soc. 113, 4192 (1991) CrossRefGoogle Scholar
  2. K. Edamatsu, G. Oohata, R. Shimizu, T. Itoh, Nature 431, 167 (2004) CrossRefADSGoogle Scholar
  3. P.D. Mitev, M. Saito, Y. Waseda, Mater. Trans. 42, 829 (2001) CrossRefGoogle Scholar
  4. A.D. Cicco, M. Taglienti, M. Minicucci, A. Filipponi, Phys. Rev. B 62, 12001 (2000) CrossRefADSGoogle Scholar
  5. D.L. Hildenbrand, K.H. Lau, J. Phys. Chem. A 109, 11328 (2005) CrossRefGoogle Scholar
  6. H. Zhang, Z.A. Schelly, D.S. Marynick, J. Phys. Chem. A 104, 6287 (2000) CrossRefGoogle Scholar
  7. J.M. L'Hermite, F. Rabilloud, L. Marcou, P. Labastie, Eur. Phys. J. D 14, 323 (2001) CrossRefADSGoogle Scholar
  8. J.M. L'Hermite, F. Rabilloud, P. Labastie, F. Spiegelman, Eur. Phys. J. D 16, 77 (2001) CrossRefADSGoogle Scholar
  9. G.J. Stueber, M. Foltin, E.R. Bernstein, J. Chem. Phys. 109, 9831 (1998) CrossRefADSGoogle Scholar
  10. C.J. Evans, M.C.L. Gerry, J. Chem. Phys. 112, 1321 (2000) CrossRefADSGoogle Scholar
  11. F. Rabilloud, F. Spiegelman, J.M. L'Hermite, P. Labastie, J. Chem. Phys. 114, 289 (2001) CrossRefADSGoogle Scholar
  12. H.-C.M. Rösing, A. Schulz, M. Hargittai, J. Am. Chem. Soc. 127, 8133 (2005) CrossRefGoogle Scholar
  13. A. Ramírez-Solís, J. Chem. Phys. 120, 2319 (2004) CrossRefADSGoogle Scholar
  14. A. Ramírez-Solís, J.P. Daudey, J. Chem. Phys. 113, 8580 (2000) CrossRefADSGoogle Scholar
  15. M.J. Frisch et al., Gaussian 03, revision B.04 (Gaussian, Inc., Pittsburgh PA, 2003) Google Scholar
  16. D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 77, 123 (1990) CrossRefGoogle Scholar
  17. M.E. Casida, in Recent Advances in Density Functional Methods Part I, edited by D.P. Chong (World Scientific, Singapore, 1995) Google Scholar
  18. R.L. Whetten, Acc. Chem. Res. 26, 49 (1993) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • N. Hori
    • 1
  • A. Furuya
    • 1
  • M. Tsuruta
    • 1
  • F. Misaizu
    • 1
    Email author
  • K. Ohno
    • 1
  1. 1.Department of ChemistryGraduate School of Science, Tohoku UniversitySendaiJapan

Personalised recommendations