Advertisement

The European Physical Journal D

, Volume 43, Issue 1–3, pp 7–10 | Cite as

Influence of electronic excitations on the thermodynamics of small carbon clusters: the example of C3 +

  • L. MontagnonEmail author
  • F. Spiegelman
Structure and Thermodynamics of Free Clusters
  • 45 Downloads

Abstract.

We illustrate the influence of the thermalization of electrons on the linear-cyclic isomerization of small carbon clusters by model Monte Carlo calculations of C3 + at 3500 K. It is shown that the inclusion of the electronic degrees of freedom, in such systems with several low-lying excited states, can significantly change the relative isomer populations and energy distributions, as compared with equivalent electronic ground-state simulations.

PACS.

71.15.Dx Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction) 05.10.Ln Monte Carlo methods 73.22.Dj Single particle states 82.60.Qr Thermodynamics of nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Weltner, R.J. Van Zee, Chem. Rev. 89, 1713 (1989) CrossRefGoogle Scholar
  2. E.E.B. Campbell, Carbon Clusters, in Clusters of Atoms and Molecules, edited by H. Haberland, Springer Series in Chemical Physics (Springer, 1994), Vol. 1 Google Scholar
  3. A. Van Orden, R.J. Saykally, Chem. Rev. 98, 2313 (1998) CrossRefGoogle Scholar
  4. S.S. Seahra, W.W. Duley, Astrophys. J. 520, 7129 (1999) CrossRefGoogle Scholar
  5. K. Raghavachari et al., J. Chem. Phys. 85, 6623 (1986); K. Raghavachari, J. Binkley, J. Chem. Phys. 87, 2191 (1987) CrossRefADSGoogle Scholar
  6. D. Tomanek, M. Schlüter, Phys. Rev. Lett. 67, 2331 (1991); S.G. Kim, D. Tomanek, Phys. Rev. Lett. 72, 2418 (1994) CrossRefADSGoogle Scholar
  7. M. Giuffreda et al., J. Phys. Chem. A 103, 5137 (1999) CrossRefGoogle Scholar
  8. V.I. Baranovski, Chem. Phys. Lett. 408, 429 (2005) CrossRefGoogle Scholar
  9. D. Frenkel, B. Smit, Understanding Molecular Simulation(Academic Press, New York, 1996); K. Ohno et al., Computational Material Science (Springer, Berlin, 1999) Google Scholar
  10. F. Calvo, F. Spiegelman, Phys. Rev. Lett. 89, 266401 (2002) CrossRefADSGoogle Scholar
  11. L. Montagnon, F. Spiegelman, J. Chem. Phys. (submitted) Google Scholar
  12. R.C. Bingham, M. Dewar, J. Am. Chem. Soc. 97, 1285 (1975) CrossRefGoogle Scholar
  13. M. Dewar, W. Thiel, J. Am. Chem. Soc. 99, 2338 (1977); J.J.P. Stewart, J. Comp. Chem. 10, 221 (1989) CrossRefGoogle Scholar
  14. D. Porezag et al., Phys. Rev. B 51, 12947 (1995); T. Frauhenheim et al., J. Phys.: Condens. Matter 14, 3015 (2002) CrossRefADSGoogle Scholar
  15. M.E. Casida, Recent Advances in Density Functional Methods, Part I (World Scientific, Singapore, 1995) Google Scholar
  16. R.O. Jones, J. Chem. Phys. 110, 726 (1999) CrossRefGoogle Scholar
  17. S. Diaz-Tendero et al., Phys. Rev. A 71, 033202 (2005); S. Diaz-Tendero et al., J. Phys. Chem. A 103, 10782 (2002) CrossRefADSGoogle Scholar
  18. R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 57, 2607 (1986); G.J. Geyer, in Computing Sciences and Statistics, proceedings of the 23rd Symposium on the Interface (American Statistical association, New York, 1991) CrossRefADSMathSciNetGoogle Scholar
  19. M. Falcioni, M.W. Deem, J. Chem. Phys. 110, 1754 (1999); Q. Yan, J.J. De Pablo, J. Chem. Phys. 111, 9509 (2000); F. Neirotti, J. Chem. Phys. 112, 10340 (2000) CrossRefADSGoogle Scholar
  20. J.M.L. Martin et al., J. Chem. Phys. 93, 5037 (1990) CrossRefADSGoogle Scholar
  21. M. Bixon, J. Jortner, J. Chem. Phys. 91, 1631 (1989) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire de Chimie et de Physique Quantique, UNMR 5626 du CNRS, Université Paul SabatierToulouseFrance

Personalised recommendations