Advertisement

The European Physical Journal D

, Volume 43, Issue 1–3, pp 125–128 | Cite as

Frontier orbitals analysis and density-functional energetics for metal-substituted fullerene C58Fe2

  • C. Tang
  • K. DengEmail author
  • W. Tan
  • Y. Yuan
  • Y. Liu
  • J. Yang
  • X. Wang
Fullerenes, Nanotubes and Nanowires

Abstract.

The formation mechanism, geometric structures, and electronic properties of a metal-substituted fullerene C58Fe2 have been studied using frontier orbital theory (FOT) and density functional theory (DFT). FOT predicts that two Fe atoms prefer to substitute the two carbons of a [6,6] double bond of C60 yielding a structure denoted as C58Fe2-3, which is different from the two equivalent substitution sites, i.e., the sites on the opposite of C60 cage or in the nearest neighboring sites of a pentagonal ring for C58X2 (X=N and B), and also different from the cross sites of a hexagonal ring for C58Si2. Five possible structures of C58Fe2 are optimized using DFT to see whether FOT works. The DFT calculations support the prediction of FOT. The Mulliken charge of Fe atom in C58Fe2-3 shows that the two Fe atoms of C58Fe2-3 lose 0.70 electron to the carbons of the cage, and the net spin populations of Fe atom indicate that each Fe atom has 1.11 μB magnetic moments, while each of the four nearest neighboring carbons has \(-0.064~\mu_B\) magnetic moments. Thus, the two Fe atoms have ferromagnetic interaction with each other, and have weak antiferromagnetic interaction with their four nearest neighboring carbons, leaving 2.0 μB magnetic moments for the molecule.

PACS.

78.40.Ri Fullerenes and related materials 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals 71.15.Mb Density functional theory, local density approximation, gradient and other corrections 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, A.R. Kortan, Nature 350, 600 (1991) CrossRefADSGoogle Scholar
  2. R.H. Xie, Phys. Lett. A 258, 51 (1999) CrossRefADSGoogle Scholar
  3. W. Branz, I.M.L. Billas, N. Malinowski, F. Tast, M. Heinebrodt, T.P. Martin, J. Chem. Phys. 109, 3425 (1998) CrossRefADSGoogle Scholar
  4. T. Guo, C.M. Jin, R.E. Smalley, J. Phys. Chem. 95, 4948 (1991) CrossRefGoogle Scholar
  5. R.G. Yu, M.X. Zhan, D.D. Cheng, S.Y. Yang, Z.Y. Liu, L.S. Zheng, J. Phys. Chem. 99, 1818 (1995) CrossRefGoogle Scholar
  6. T. Kimura, T. Sugai, H. Shinohara, Chem. Phys. Lett. 256, 269 (1996) CrossRefGoogle Scholar
  7. J.L. Fye, M.F. Jarrold, J. Phys. Chem. A 101, 1836 (1997) CrossRefGoogle Scholar
  8. I.M.L. Billas, W. Branz, N. Malinowski, F. Tast, M. Heinebrodt, T.P. Martin, C. Massobriot, M. Boerott, M. Parrinello, Nanostruct. Mat. 12, 1071 (1999) CrossRefGoogle Scholar
  9. T.G. Schmalz, W.A. Seitz, D.J. Klein, G.E. Hite, J. Am. Chem. Soc. 110, 1113 (1988) CrossRefGoogle Scholar
  10. Z.F. Chen, K.Q. Ma, Y.M. Pan, X.Z. Zhao, A.C. Tang, Can. J. Chem. 77, 291 (1999) CrossRefADSGoogle Scholar
  11. N. Kurita, K. Kobayashi, H. Kumahora, K. Tago, Phys. Rev. B 48, 7 (1993) Google Scholar
  12. I.M.L. Billas, C. Massobrio, M. Boero, M. Parrinello, W. Branz, F. Tast, N. Malinowski, M. Heinebrodt, T.P. Martin, J. Chem. Phys. 111, 6787 (1999) CrossRefADSGoogle Scholar
  13. H.P. Wu, K.M. Deng, J.L. Yang, Journal of Nanjing university of science and technology 28, 194 (2004) Google Scholar
  14. C.G. Ding, J.L. Yang, Q.X. Li, K.L. Wang, F. Toigo, Phys. Lett. A 256, 417 (1998) Google Scholar
  15. E. Artacho, D. Sànchez-Portal, P. Ordejòn, A. Garcia, J. M. Soler, Phys. Stat. Sol. B 215, 809 (1999) CrossRefGoogle Scholar
  16. A.D. Becke, J. Chem. Phys. 88, 1053 (1988) CrossRefADSGoogle Scholar
  17. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) CrossRefADSGoogle Scholar
  18. P. Hohenberg, W. Kohn, Phys. Rev. 136, 864 (1964); W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965) CrossRefADSMathSciNetGoogle Scholar
  19. R. Fletcher, Practical Methods of Optimization (Wiley, New York), Vol. 1, 1980 Google Scholar
  20. K. Fukui, Acc. Chem. Res 4, 57 (1971) CrossRefMathSciNetGoogle Scholar
  21. W. Branz, I.M.L. Billas, N. Malinowski, F. Tast, M. Heinebrodt, T.P. Martin, J. Chem. Phys. 109, 3425 (1998) CrossRefADSGoogle Scholar
  22. G.Y. Sun, M.C. Nicklaus, R.-H. Xie, J. Phys. Chem. A 109, 4617 (2005) CrossRefGoogle Scholar
  23. J.I. Aihara, Theo. Chem. Acc. 102, 134 (1999) Google Scholar
  24. J.I. Aihara, Chem. Phys. Lett. 343, 465 (2001) CrossRefGoogle Scholar
  25. I.M.L. Billas, F. Tast, W. Branz, N. Malinowski, M. Heinebrodt, T.P. Martin, M. Boeroa, C. Massobriob, M. Parrinello, Eur. Phys. J. D 9, 337 (1999) CrossRefADSGoogle Scholar
  26. S.H. Wang, F. Chen, Y.C. Fan, M. Kashni, M. Malaty, S.A. Jansen, J. Phys. Chem. 99, 6801 (1995) CrossRefGoogle Scholar
  27. C.G. Ding, J.L. Yang, X.Y. Cui, C.T. Chan, J. Chem. Phys. 111, 8481 (1999) CrossRefGoogle Scholar
  28. G.L. Lu, K.M. Deng, H.P. Wu, J.L. Yang, X. Wang, J. Chem. Phys. 124, 54305 (2006) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • C. Tang
    • 1
    • 2
  • K. Deng
    • 1
    • 2
    Email author
  • W. Tan
    • 1
    • 2
  • Y. Yuan
    • 1
    • 2
  • Y. Liu
    • 1
    • 2
  • J. Yang
    • 2
  • X. Wang
    • 1
  1. 1.Department of Applied PhysicsNanjing University of Science and TechnologyNanjing JiangsuP.R. China
  2. 2.Laboratory of Bond Selective Chemistry, University of Science and Technology of ChinaAnhuiP.R. China

Personalised recommendations