The European Physical Journal D

, Volume 42, Issue 3, pp 435–440 | Cite as

Measurement of OH spatially resolved spectrum in a wire-plate pulsed streamer discharge

  • F. Liu
  • W. WangEmail author
  • W. Zheng
  • Y. Wang
Plasma Physics


In this study, spatially resolved measurements of the emission intensity of OH (A2Σ↦X2Π, 0-0) and the vibrational temperature of N2 (C) have been performed during a positive pulsed streamer discharge with a wire-plate electrode configuration at atmospheric pressure. The effects of pulse peak voltage, pulse repetition rate and the added O2 flow rate on the spatial distributions of the emission intensity of OH (A2Σ↦X2Π, 0-0) and the vibrational temperatures of N2 (C) perpendicular to the wire in the direction towards the plate (in the radial direction) are investigated. It has been found that the emission intensity of OH (A2Σ↦X2Π, 0-0) increases with increasing pulse peak voltage and pulse repetition rate and decreases with increasing the distance from the wire electrode. When the different oxygen flows are added in N2 and H2O mixture gas, the emission intensity of OH (A2Σ↦X2Π, 0-0) decreases with increasing the flow rate of oxygen. The vibrational temperature of N2 (C) is nearly independent of pulsed peak voltage and pulsed repetition rate, but increases with increasing the added O2 flow rate and keeps almost constant in the radial direction under the present experimental conditions. This measurement plays a crucial role in understanding the discharge characters of pulsed streamer discharge and establishing the molecule reaction dynamics model of pulsed streamer discharge.


52.70.Kz Optical (ultraviolet, visible, infrared) measurements 52.80.Hc Glow; corona 82.33.Xj Plasma reactions (including flowing afterglow and electric discharges) 52.20.Hv Atomic, molecular, ion, and heavy-particle collisions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. Mizuno, J.S. Clements, R.H. Davis, IEEE Trans. Ind. Appl. 22, 516 (1986) Google Scholar
  2. R.P. Dahiya, S. K. Mishra, A. Veefkind, IEEE Trans. Plasma Sci. 21, 346 (1993) CrossRefGoogle Scholar
  3. A.T. Sugiarto, S. Ito, T. Ohshima, M. Sato, J.D. Skalny, J. Electrostat. 58, 135 (2003) CrossRefGoogle Scholar
  4. J.J. Lowke, R. Morrow, IEEE Trans. Plasma Sci. 23, 661 (1995) CrossRefGoogle Scholar
  5. A. Abou-Ghazala, S. Katsuki, K.H. Schoenbach, F.C. Dobbs, K.R. Moreira, IEEE Trans. Plasma Sci. 30, 1449 (2002) CrossRefGoogle Scholar
  6. M. Yamamoto, M. Nishioka, M. Sadakata, J. Electrostat. 56, 173 (2002) CrossRefGoogle Scholar
  7. T. Oda, J. Electrostat. 57, 293 (2003) CrossRefMathSciNetGoogle Scholar
  8. U. Roland, F. Holzer, F.D. Kopinke, Catal. Today 73, 315 (2002) CrossRefGoogle Scholar
  9. N.M. Šišović, G.Lj. Majstorović, N. Konjević, Eur. Phys. J. D 32, 347 (2005) CrossRefGoogle Scholar
  10. W. Ebeling, H. Hache, M. Spahn, Eur. Phys. J. D 23, 265 (2003) CrossRefADSGoogle Scholar
  11. K.P. Yan, E.J.M. van Heesch, A.J.M. Pemen, P.A.H.J. Huijbrechts, J. Electrostat. 51-52, 218 (2001) Google Scholar
  12. F. Liu, W.C. Wang, S. Wang, C.S. Ren, Y.N. Wang, Plasma Sci. Technol. 7, 2851 (2005) CrossRefGoogle Scholar
  13. V.A. Lozovsky, I. Derzy, S. Cheskis, Chem. Phys. Lett. 284, 407 (1998) CrossRefGoogle Scholar
  14. A.A. Joshi, B.R. Locke, P. Arce, W.C. Finney, J. Hazard. Mater. 41, 3 (1995) CrossRefGoogle Scholar
  15. W.F.L.M. Hoeben, E.M. van Veldhuizen, W.R. Rutgers, C.A.M.G. Cramers, G.M.W. Kroesen, Plasma Sources Sci. Technol. 9, 361 (2000) CrossRefADSGoogle Scholar
  16. B. Sun, M. Sato, A. Harano, J.S. Clements, J. Electrostat. 43, 115 (1998) CrossRefGoogle Scholar
  17. S.K. Tang et al., J. Vac. Sci. Technol. A 18, 2213 (2000) CrossRefADSGoogle Scholar
  18. W.C. Wang, F. Liu, J.L. Zhang, C.S. Ren, Spectrosc. Spect. Anal. 24, 1288 (2004) (in Chinese) Google Scholar
  19. W.C. Wang, S. Wang, F. Liu, W. Zheng, D.Z. Wang, Spectrochimica Acta A 63, 477 (2006) CrossRefGoogle Scholar
  20. W.C. Wang, F. Liu, J.L. Zhang, Y.N. Wang, Spectrochimica Acta A 59, 3267 (2003) CrossRefGoogle Scholar
  21. W.C. Wang, J.L. Zhang, F. Liu, Y. Liu, Y.N. Wang, Vacuum 74, 333 (2004) CrossRefGoogle Scholar
  22. R. Ono, T. Oda, IEEE Trans. Ind. Appl. 37, 709 (2001) CrossRefGoogle Scholar
  23. R. Ono, T. Oda, IEEE Trans. Ind. Appl. 36, 82 (2000) CrossRefGoogle Scholar
  24. R. Ono, T. Oda, in Proceedings of Thirty-Fourth IAS Annual Meeting, Industry Applications Conference, Conference Record of the 1999 IEEE (1999), Vol. 3, p. 1461 Google Scholar
  25. R. Ono, T. Oda, J. Phys. D: Appl. Phys. 35, 2133 (2002) CrossRefADSGoogle Scholar
  26. T. Namihira, D. Wang, S. Katsuki, R. Hackam, H. Akiyama, IEEE Trans. Plasma Sci. 31, 1091 (2003) CrossRefGoogle Scholar
  27. E.M. van Veldhuizen, W.R.J. Rutgers, J. Phys. D: Appl. Phys. 35, 2169 (2002) CrossRefADSGoogle Scholar
  28. O. Eichwald, M. Yousfi, A. Hennad, M.D. Benabdessadok, J. Appl. Phys. 82, 4781 (1997) CrossRefADSGoogle Scholar
  29. G. Sathiamoorthy, S. Kalyana, W. C. Finney, R.J. Clark, B.R. Locke, Ind. Eng. Chem. Res. 38, 1844 (1999) CrossRefGoogle Scholar
  30. F. Liu, W. Wang, W. Zheng, Y. Wang, Eur. Phys. J. D 38, 515 (2006) CrossRefADSGoogle Scholar
  31. S.N. Suchard, Spectroscopic Data: Heternuclear Diatomic Molecules Part B (The Aerospace Corporation Los Angeles, California, 1975), Vol. 1 Google Scholar
  32. B.M. Penetrante, J.N. Bardsley, M.C. Hsiao, Jpn J. Appl. Phys. 36, 5007 (1997) CrossRefGoogle Scholar
  33. R. Brandenburg, K.V. Kozlov, A.M. Morozov, H.E. Wagner, P. Michel, in Proceedings of 26th Int. Conf. on Phenomena in Ionized Gases (ICPIG-26), Greifswald, Germany (2003), Vol. 4, p. 43 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of TechnologyDalianP.R. China

Personalised recommendations