The European Physical Journal D

, Volume 42, Issue 2, pp 341–348 | Cite as

Precision of single-qubit gates based on Raman transitions

  • X. Caillet
  • C. SimonEmail author
Quantum Optics and Quantum Information


We analyze the achievable precision for single-qubit gates that are based on off-resonant Raman transitions between two near-degenerate ground states via a virtually excited state. In particular, we study the errors due to non-perfect adiabaticity and due to spontaneous emission from the excited state. For the case of non-adiabaticity, we calculate the error as a function of the dimensionless parameter χ=Δτ, where Δ is the detuning of the Raman beams and τ is the gate time. For the case of spontaneous emission, we give an analytical argument that the gate errors are approximately equal to Λ γ/Δ, where Λ is the rotation angle of the one-qubit gate and γ is the spontaneous decay rate, and we show numerically that this estimate holds to good approximation.


03.67.Lx Quantum computation 73.21.La Quantum dots 


13.10.+n Effects of noise and imperfections 15.10.Qd Quantum dots 16.10.Es Electrons in semiconductors: spin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) Google Scholar
  2. C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 75, 4714 (1995); M.A. Rowe et al., Nature 409, 791 (2001) zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. G.K. Brennen, C.M. Caves, P.S. Jessen, I.H. Deutsch, Phys. Rev. Lett. 82, 1060 (1999) CrossRefADSGoogle Scholar
  4. A. Imamoglu et al., Phys. Rev. Lett. 83, 4204 (1999) CrossRefADSGoogle Scholar
  5. K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998) CrossRefADSGoogle Scholar
  6. Z. Kis, F. Renzoni, Phys. Rev. A 65, 032318 (2002) CrossRefADSGoogle Scholar
  7. P. Chen, C. Piermarocchi, L.J. Sham, D. Gammon, D.G. Steel, Phys. Rev. B 69, 075320 (2004) CrossRefADSGoogle Scholar
  8. T. Calarco, A. Datta, P. Fedichev, E. Pazy, P. Zoller, Phys. Rev. A 68, 012310 (2003) CrossRefADSGoogle Scholar
  9. A. Nazir, B.W. Lovett, S.D. Barrett, T.P. Spiller, G.A.D. Briggs, Phys. Rev. Lett. 93, 150502 (2004) CrossRefADSGoogle Scholar
  10. C. Piermarocchi, P. Chen, L.J. Sham, D.G. Steel, Phys. Rev. Lett. 89, 167402 (2002) CrossRefADSGoogle Scholar
  11. R.-B. Liu, W. Yao, L.J. Sham, Phys. Rev. B 72, 081306(R) (2005) CrossRefADSGoogle Scholar
  12. Z. Kis, E. Paspalakis, Phys. Rev. B 69, 024510 (2004) CrossRefADSGoogle Scholar
  13. K. Roszak, A. Grodecka, P. Machnikowski, T. Kuhn, Phys. Rev. B 71, 195333 (2005) CrossRefADSGoogle Scholar
  14. M.V. Berry, Proc. Roy. Soc. Lond. A 429, 61 (1990); M. Elk, Phys. Rev. A 52, 4017 (1995); K. Drese, M. Holthaus, Eur. Phys. J. D 3, 73 (1998); S. Guérin, S. Thomas, H.R. Jauslin, Phys. Rev. A 65, 023409 (2002) MathSciNetADSCrossRefGoogle Scholar
  15. N.V. Vitanov, S. Stenholm, Phys. Rev. A 56, 1463 (1997) CrossRefADSGoogle Scholar
  16. T. Flissikowski et al., Phys. Rev. Lett. 86, 3172 (2001); E. Moreau et al., Phys. Rev. Lett. 87, 183601 (2001); D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, D. Park, Science 273, 87 (1996) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire de Spectrométrie Physique, CNRS, Université de Grenoble 1St. Martin d'HèresFrance

Personalised recommendations