Advertisement

The European Physical Journal D

, Volume 42, Issue 3, pp 475–481 | Cite as

Atomic squeezing in assembly of two two-level atoms interacting with a single mode coherent radiation

  • H. PrakashEmail author
  • R. Kumar
Quantum Optics and Quantum Information

Abstract.

Saito and Ueda [Phys. Rev. A 59, 3959 (1999)] studied atomic and radiation squeezing in interaction of a single mode coherent state \(\left| \alpha \right\rangle \) of radiation with two excited two-level atoms, using the Jaynes Cummings Hamiltonian. They considered α real and studied squeezing of the Dicke operator Sx using the Kitagawa-Ueda criterion for squeezing and coupling times less than or nearly equal to \(\vert \alpha \vert^{-1}\). We obtain results to all orders in coupling time for atoms, which are initially in (i) fully excited, (ii) superradiant or in (iii) ground states and obtain more general results. We use our recently reported criterion for atomic squeezing, of which the Kitagawa-Ueda criterion is a special case, and obtain a much stronger (nearly 95%) atomic squeezing than that (nearly 1.1%) reported by Saito and Ueda.

PACS.

42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements 

QICS

15.10.-p Quantum optics: Physical qubits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., the review articles, D.F. Walls, Nature 306, 141 (1983); R. Loudon, P.L. Knight, J. Mod. Opt. 34, 709 (1987); V.V. Dodonov, J. Opt. B 4, R1 (2002) CrossRefGoogle Scholar
  2. See, e.g., M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997), pp. 56-65; Jin Sheng Peng, Gao-Xiang Li, Introduction to Modern Quantum Optics (World Scientific, 1999), pp. 361-379 Google Scholar
  3. B.R. Mollow, R.J. Glauber, Phys. Rev. 160, 1076 (1967) CrossRefADSGoogle Scholar
  4. H. Prakash, N. Chandra, Lett. Nuovo Cim. 4, 1196 (1970); H. Prakash, N. Chandra, Ind. J. Pure Appl. Phys. 9, 677 (1971); H. Prakash, N. Chandra, Lett. Nuovo Cim. 9, 688 (1971); H. Prakash, N. Chandra, Lett. Nuovo Cim. 9, 767 (1971) Google Scholar
  5. See, e.g., H.-A. Bachor, A Guide to Experiments in Quantum Optics (Wiley-VCH, 1998), pp. 223-230 Google Scholar
  6. H. Takahashi, in Advances in Communication Systems, edited by A.V. Balakrishnan (Academic Press, Orlando FL, 1965), pp. 227; H.P. Yuen, J.H. Shapiro, IEEE Trans. Inform. Theory IT-25, 657 (1978); H.P. Yuen, J.H. Shapiro, IEEE Trans. Inform. Theory IT-26, 78 (1980); Y. Yamamoto, H.A. Haus, Rev. Mod. Phys. 58, 1001 (1986); R.E. Slusher, B. Yurke, J. Lightwave Technol. 8, 466 (1990) Google Scholar
  7. C.M. Caves, Phys. Rev. D 23, 1639 (1981); R. Loudan, Phys. Rev. Lett. 47, 815 (1981); “Quantum Optics, Experimental Gravitation, and Measurement Theory”, edited by P. Meystre, M.O. Scully (Plenum Press, New York, 1981), NATO ASI Series B: Physics 94; see articles by K.S. Thorne (pp. 325-346), R.W.P. Drever and colleagues (pp. 503-514), J. Hough, and colleagues (pp. 515-524) CrossRefGoogle Scholar
  8. L. Vaidman, Phys. Rev. A 49, 1473 (1994); A. Furusawa et al., Science 282, 706 (1998); S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998); S.L. Braunstein, A.K. Pati, Quantum Information with Continuous Variables (Klauwer Academic, Dordrecht, 2003); K. Hammerer, E.S. Polzik, J.I. Cirac, Phys. Rev. A 72, 052313 (2005) CrossRefADSMathSciNetGoogle Scholar
  9. H. Prakash, N. Chandra, Vachaspati, Phys. Rev. A 9, 2167 (1974); H. Prakash, N. Chandra, Vachaspati, Ind. J. Pure Appl. Phys. 13, 757 (1976); H. Prakash, N. Chandra, Vachaspati, Ind. J. Pure Appl. Phys. 13, 763 (1976); H. Prakash, N. Chandra, Vachaspati, Ind. J. Pure Appl. Phys. 14, 41 (1976); H. Prakash, N. Chandra, Vachaspati, Ind. J. Pure Appl. Phys. 14, 48 (1976); M.T. Raiford, Phys. Rev. A 9, 2060 (1974); G. Milburn, D.F. Walls, Opt. Commun. 39, 401 (1981); Ling-Au, Wu, H.J. Kimble, J.L. Hall, Huifa Wu, Phys. Rev. Lett. 57, 2520 (1986) CrossRefADSMathSciNetGoogle Scholar
  10. D.F. Walls, P. Zoller, Phys. Rev. Lett. 47, 709 (1981) CrossRefADSGoogle Scholar
  11. P.A. Meystre, M.S. Zubairy, Phys. Lett. 89A, 390 (1982) CrossRefGoogle Scholar
  12. G.S. Agrawal, R.R. Puri, Phys. Rev. A 41, 3782 (1990) CrossRefADSGoogle Scholar
  13. K. Wodkiewicz, Phys. Rev. B 32, 4750 (1985); K. Wodkiewicz, J.H. Eberly, J. Opt. Soc. Am. B 2, 458 (1985); S.M. Barnett, M.A. Dupertuis, J. Opt. Soc. Am. B 4, 505 (1987) CrossRefADSGoogle Scholar
  14. J. Seke, J. Opt. B: Quantum Semiclass. Opt. 7, 161 (1995) CrossRefADSGoogle Scholar
  15. D.J. Wineland, J.J. Bollinger, W.M. Itano, F.L. Moore, Phys. Rev. A 46, R6797 (1992) Google Scholar
  16. M. Kitagawa, M. Ueda, Phys. Rev. A 47, 5138 (1993) CrossRefADSGoogle Scholar
  17. H. Saito, M. Ueda, Phys. Rev. A 59, 3959 (1999) CrossRefADSGoogle Scholar
  18. A. Sorensen, L.M. Duan , J.I. Cirac, P. Zoller, Nature 409, 63 (2001) CrossRefADSGoogle Scholar
  19. X. Wang, B.C. Sanders, Phys. Rev. A 68, 033821 (2003) CrossRefADSGoogle Scholar
  20. H. Prakash, R. Kumar, J. Opt B: Quantum Semiclass. Opt. 7, S757 (2005) Google Scholar
  21. J. Hald, J.L. Sorensen, C. Schori, E.S. Polzik, Phys. Rev. Lett. 83, 1319 (1999); A. Kuzmich, K. Molmer, E.S. Polzik, Phys. Rev. Lett. 79, 4782 (1997) CrossRefADSGoogle Scholar
  22. See e.g., L. Allen, J.H. Eberly, Optical Resonance and Two-Level Atoms (John Wiley and Sons Inc., 1975), pp. 34-45; E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963); M. Tavis, F.W. Cummings, Phys. Rev. 170, 379 (1968); H.I. Yoo, J.H. Eberly, Phys. Rep. 118, 239 (1985); V. Buzek, J. Mod. Opt. 37, 1033 (1990); B.W. Shore, P.L. Knight, J. Mod. Opt. 40, 1195 (1993) CrossRefGoogle Scholar
  23. R.H. Dicke, Phys. Rev. 93, 99 (1954) zbMATHCrossRefADSGoogle Scholar
  24. S. Stenholm, Phys. Rep. 6, 1 (1973) CrossRefADSGoogle Scholar
  25. H. Prakash, N. Chandra and Vachaspati, Acta Phys. Pol. A 48, 123 (1975) Google Scholar
  26. Note that \(| {\langle \vec{S} \rangle } |=\sqrt {\langle {S_x } \rangle ^2+\langle {S_y } \rangle ^2+\langle {S_z } \rangle ^2}\); \(\langle \vec{S} \rangle ^2=\langle {\vec{S}\cdot\hat{\bf n}} \rangle ^2+| {\langle {\vec{S}\times \hat{\bf n}} \rangle } |^2\geqslant \langle {\vec{S}.\hat{\bf n}} \rangle ^2\) Google Scholar
  27. Reference 17, equation (21) on page 3962 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of AllahabadAllahabadIndia
  2. 2.M. N. Saha Centre of Space Studies, Institute of Interdisciplinary Studies, University of AllahabadAllahabadIndia
  3. 3.Department of PhysicsVaranasiIndia

Personalised recommendations