The European Physical Journal D

, Volume 42, Issue 2, pp 259–267 | Cite as

The aluminum arsenides AlmAsn (m + n = 2–5) and their anions: Structures, electron affinities and vibrational frequencies

  • L. GuoEmail author
  • H.-S. Wu
Clusters and Nanostructures


Geometries, electronic states and electron affinities of AlmAsn and AlmAs n (m+n=2–5) clusters have been examined using four hybrid and pure density functional theory (DFT) methods. Structural optimization and frequency analyses are performed using a 6-311+G(2df) one-particle basis set. The geometries are fully optimized with each DFT method independently. The three types of energy separations reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The calculation results show that the singlet structures have higher symmetry than that of doublet structures. The best functional for predicting molecular structures was found to be BLYP, while other functionals generally underestimated bond lengths. The largest adiabatic electron affinity, vertical electron affinity and vertical detachment energy, obtained at the 6-311+G(2df)/BP86 level of theory, are 2.20, 2.04 and 2.27 eV (AlAs), 2.13, 1.94 and 2.38 eV (AlAs2), 2.44, 2.39 and 2.47 eV (Al2As), 2.09, 1.80 and 2.53 eV (Al2As2), 2.01, 1.57 and 2.36 eV (AlAs3), 2.32, 2.11 and 2.55 eV (Al2As3), 2.40, 1.45 and 3.26 eV (AlAs4), 1.94, 1.90 and 2.07 eV (Al4As), respectively. However, the BHLYP method gives the largest values for EAad and EAvert of Al3As and EAad of Al3As2, respectively. For the vibrational frequencies of the AlnAsm series, the B3LYP method produces good predictions with the average error only about 10 cm-1 from available experimental and theoretical values. The other three functionals overestimate or underestimate the vibrational frequencies, with the worst predictions given by the BHLYP method.


31.15.Ew Density-functional theory 36.40.-c Atomic and molecular clusters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Gomez, T.R. Taylor, D.M. Neumark, J. Phys. Chem. A 105, 6886 (2001) CrossRefGoogle Scholar
  2. K. Balasubramanian, P.Y. Feng, J. Phys. Chem. A 105, 11295 (2001) CrossRefGoogle Scholar
  3. T.R. Taylor, H. Gomez, K.R. Asmis, D.M. Neumark, J. Chem. Phys. 115, 4620 (2001) CrossRefADSGoogle Scholar
  4. W. Andreoni, Phys. Rev. B. 45, 4203 (1992) CrossRefADSGoogle Scholar
  5. H.K. Quek, Y.P. Feng, C.K. Ong, Z. Phys. D 42, 309 (1997) CrossRefMathSciNetGoogle Scholar
  6. V. Tozzini, F. Buda, A. Fasolino, J. Phys. Chem. B 105, 12477 (2001) CrossRefGoogle Scholar
  7. A. Costales, A.K. Kandalam, R. Franco, R. Pandey, J. Phys. Chem. B 106, 1940 (2002) CrossRefGoogle Scholar
  8. E.F. Archibong, A. St-Amant, J. Phys. Chem. A 106, 7390 (2002) CrossRefGoogle Scholar
  9. P.Y. Feng, D. Dai, K. Balasubramanian, J. Phys. Chem. A 104, 422 (2000) CrossRefGoogle Scholar
  10. X. Zhu, J. Mol. Struct. (Theochem) 638, 99 (2003) CrossRefGoogle Scholar
  11. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964); W. Kohn, L. Sham, Phys. Rev. A 140, 1133 (1965) CrossRefMathSciNetADSGoogle Scholar
  12. W. Kohn, A.D. Becke, R.G. Parr, J. Phys. Chem. 100, 12974 (1996) CrossRefGoogle Scholar
  13. E.F. Achibong, A. St-Amant, Chem. Phys. Lett. 316, 151 (2000) CrossRefGoogle Scholar
  14. S.K. Nayak, S.N. Khanna, P. Jena, Phys. Rev. B 57, 3787 (1998) CrossRefADSGoogle Scholar
  15. A. Costales, R. Pandey, J. Phys. Chem. A 107, 192 (2003) CrossRefGoogle Scholar
  16. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1993) CrossRefADSGoogle Scholar
  17. A.D. Becke, J. Chem. Phys. 98, 1372 (1993) CrossRefADSGoogle Scholar
  18. A.D. Becke, J. Chem. Phys. 98, 5648 (1993); P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994) CrossRefADSGoogle Scholar
  19. J.P. Perdew, Phys. Rev. B 34, 7406 (1986) CrossRefADSGoogle Scholar
  20. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghava-chari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, computer code Gaussian98, revision A.6 (Gaussian, Inc., Pittsburgh, PA, 1998) Google Scholar
  21. E.F. Archibong, A. St-Amant, J. Chem. Phys. 109, 962 (1998) CrossRefADSGoogle Scholar
  22. E.F. Achibong, A. St-Amant, Chem. Phys. Lett. 284, 331 (1998) CrossRefGoogle Scholar
  23. E.F. Achibong, A. St-Amant, J. Phys. Chem. A 102, 6877 (1998) CrossRefGoogle Scholar
  24. E.F. Achibong, A. St-Amant, J. Phys. Chem. A 103, 1109 (1999) CrossRefGoogle Scholar
  25. E.F. Achibong, A. St-Amant, Chem. Phys. Lett. 316, 151 (2000) CrossRefGoogle Scholar
  26. A.D. McLean, G.S. Chandler, J. Chem. Phys. 72, 5639 (1980) CrossRefADSGoogle Scholar
  27. M.J. Frisch et al. (Gaussian 94, Gaussian, Pittsburgh, PA, 1995) Google Scholar
  28. Z.Y. Liu, C.R. Wang, R.B. Huang, Int. J. Mass Spectrom. Ion Proc. 4, 201 (1995) CrossRefGoogle Scholar
  29. E.F. Achibong, A. St-Amant, J. Phys. Chem. A 106, 7390 (2002) CrossRefGoogle Scholar
  30. P. Piquini, S. Canuto, A. Fazzio, Nanostruct. Mat. 10, 635 (1998) CrossRefGoogle Scholar
  31. M.D. Chen, R.B. Huang, Chem. Phys. Lett. 325, 22 (2000) CrossRefADSGoogle Scholar
  32. R.O. Jones, D. Hohl, J. Chem. Phys. 92, 6710 (1990) CrossRefADSGoogle Scholar
  33. T.R. Talor, K.R. Asmis, C. Xu, D.M. Neumark, Chem. Phys. Lett. 297, 133 (1998) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Chemistry and Material Chemistry, Shanxi Normal UniversityLinfenP.R. China

Personalised recommendations