Advertisement

The European Physical Journal D

, Volume 45, Issue 1, pp 67–74 | Cite as

Superheavy element chemistry at GSI – status and perspectives

  • M. SchädelEmail author
Chemical Properties of the Heaviest Elements

Abstract.

Superheavy elements have been synthesized and chemically characterized one-atom-at-a-time up to element 108. Presently, the quest for identification and investigation of element 112 is one of the hottest topics in this field. The transactinide elements 104 to 108 are members of group 4 to 8 of the periodic table and element 112 belongs into group 12. For some of these elements detailed chemical properties have been revealed which show stunning deviations from simple extrapolations within their respective group while others exhibit great similarities with their lighter homologues. All presently known chemical properties of seaborgium (Sg, element 106) — the heaviest element whose behavior was investigated in aqueous solution — and hassium (Hs, element 108) were obtained in experiments performed at the GSI in large international collaborations. Recently, the highly efficient and very clean separation of Hs was applied for nuclear studies of various Hs nuclides investigating their cross section and their nuclear decay properties in the region of the N=162 neutron shell. To overcome certain limitations of the presently used on-line chemical separations the new TransActinide Separator and Chemistry Apparatus (TASCA) — with a gas-filled recoil separator as a front-end tool — was designed and built at the GSI in a collaborative effort. Presently in its commissioning phase, TASCA shall be a key instrument for a big leap into quantitatively and qualitatively new experiments in the region of superheavy elements.

PACS.

27.90.+b $220\leqslant A$  25.70.-z Low and intermediate energy heavy-ion reactions 25.70.Jj Fusion and fusion-fission reactions 23.60.+e Alpha decay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Schädel, Angew. Chem. 118, 378 (2006), M. Schädel, Angew. Chem. Int. Ed. 45, 368 (2006) CrossRefGoogle Scholar
  2. The Chemistry of Superheavy Elements, edited by M. Schädel (Kluwer Academic Publishers, Dordrecht, 2003) Google Scholar
  3. J.V. Kratz, Pure Appl. Chem. 75, 103 (2003) Google Scholar
  4. D.C. Hoffman, D.M. Lee, V. Pershina, Transactinide Elements and Future Elements, in: The Chemistry of the Actinide and Transactinide Elements, 3rd edn., edited by L.R. Morrs, N.M. Edelstein, J. Fuger (Springer, Dordrecht, 2006), Vol. 3, pp. 1652–1752 Google Scholar
  5. Y. Nagame et al., Radiochim. Acta 93, 519 (2005) CrossRefGoogle Scholar
  6. H. Haba et al., J. Am. Chem. Soc. 126, 5219 (2004) CrossRefGoogle Scholar
  7. M. Schädel et al., Nature 388, 55 (1997) CrossRefGoogle Scholar
  8. M. Schädel et al., Radiochim. Acta 83, 163 (1998) Google Scholar
  9. Ch.E. Düllmann et al., Nature 418, 859 (2002) CrossRefADSGoogle Scholar
  10. A. von Zweidorf et al., Radiochim. Acta 92, 855 (2004) CrossRefGoogle Scholar
  11. A.B. Yakushev et al., Radiochim. Acta 91, 433 (2003) CrossRefGoogle Scholar
  12. R. Eichler et al., Radiochim. Acta 94, 181 (2006) CrossRefGoogle Scholar
  13. H.W. Gäggeler, R. Eichler, private communication, 2006; PSI press release (in German), 31 May 2006, http://www.psi.ch/medien/medien-news.shtml Google Scholar
  14. J.P. Omtvedt et al., J. Nucl. Radiochem. Sci. 3, 121 (2002) Google Scholar
  15. Ch.E. Düllmann et al., Nucl. Instr. Meth. A 551, 528 (2005) CrossRefADSGoogle Scholar
  16. M. Schädel, D. Ackermann, A. Semchenkov, A. Türler, GSI Scientific Report 2005, GSI Report 2006-1, p. 262, and http://www.gsi.de/tasca Google Scholar
  17. Yu.Ts. Oganessian et al., Phys. Rev. C 70, 064609-1 (2004) CrossRefADSGoogle Scholar
  18. Yu.Ts. Oganessian et al., Phys. Rev. C 74, 044602-1 (2006) CrossRefADSGoogle Scholar
  19. J. Dvorak et al., Phys. Rev. Lett. 97, 242501 (2006) CrossRefADSGoogle Scholar
  20. W. Reisdorf, M. Schädel, Z. Phys. A 343, 47 (1992) CrossRefADSGoogle Scholar
  21. I. Muntian et al., Acta Phys. Pol. B 34, 2073 (2003) ADSGoogle Scholar
  22. J.V. Kratz et al., Radiochim. Acta 48, 121 (1989) Google Scholar
  23. W. Paulus et al., Radiochim. Acta 84, 69 (1999) Google Scholar
  24. V. Pershina et al., Radiochim. Acta 64, 37 (1994) Google Scholar
  25. H. Haba et al., J. Nucl. Radiochem. Sci. 3, 143 (2002) Google Scholar
  26. A. Toyoshima et al., J. Nucl. Radiochem. Sci. 5, 45 (2004) Google Scholar
  27. M. Schädel et al., Radiochim. Acta 48, 171 (1989) Google Scholar
  28. Y. Nagame et al., Czech. J. Phys. 53, A299 (2003) Google Scholar
  29. M. Schädel et al., Radiochim. Acta 77, 149 (1997) Google Scholar
  30. Ch.E. Düllmann et al., Nucl. Instr. Meth. A 479, 631 (2002) CrossRefGoogle Scholar
  31. U.W. Kirbach et al., Nucl. Instr. Meth. A 484, 587 (2002) CrossRefGoogle Scholar
  32. H.W. Gäggeler, A. Türler, Gas-Phase Chemistry in: The Chemistry of Superheavy Elements, edited by M. Schädel (Kluwer Academic Publishers, Dordrecht, 2003), pp. 237–289 Google Scholar
  33. V. Pershina et al., J. Chem. Phys. 115, 792 (2001) CrossRefGoogle Scholar
  34. B. Fricke, Struct. Bond. 21, 89 (1975) CrossRefGoogle Scholar
  35. K.S. Pitzer, J. Chem. Phys. 63, 1032 (1975) ADSGoogle Scholar
  36. V. Pershina et al., Nucl. Phys. A 734, 200 (2004) CrossRefGoogle Scholar
  37. B. Eichler, Kernenergie 19, 307 (1976) Google Scholar
  38. B. Eichler, H. Rossbach, Radiochim. Acta 33, 121 (1983) Google Scholar
  39. B. Eichler, R. Eichler, Empirical Models in Gas-Phase Adsorption Chemistry, in: The Chemistry of Superheavy Elements, edited by M. Schädel (Kluwer Academic Publishers, Dordrecht, 2003), pp. 205–236 Google Scholar
  40. Yu.Ts. Oganessian et al., Eur. Phys. J. A 5, 63 (1999) ADSGoogle Scholar
  41. Yu.Ts. Oganessian et al., Eur. Phys. J. A 19, 3 (2004) CrossRefADSGoogle Scholar
  42. S. Hofmann et al., GSI Scientific Report 2006, GSI Report 2007-1, p. 191; S. Hofmann et al., J. Nucl. Radiochem. Sci. 7, R25 (2006) Google Scholar
  43. K.E. Gregorich et al., Phys. Rev. C 72, 014605 (2005) CrossRefADSGoogle Scholar
  44. L. Stavsetra et al., Nucl. Instr. Meth. A 543, 509 (2005) CrossRefGoogle Scholar
  45. R. Sudowe et al., Radiochim. Acta. 94, 123 (2006) CrossRefGoogle Scholar
  46. Ch.E. Düllmann, Czech. J. Phys. 56, D333 (2006) Google Scholar
  47. M. Schädel et al., GSI Scientific Report 2005, GSI report 2006-1, p. 262. In addition, information on the TASCA project, general information on this community and links to a large number of related workshop contributions can be found at: http://www.gsi.de/tasca Google Scholar
  48. V. Ninov et al., Nucl. Instr. Meth. A 357, 486 (1995) CrossRefGoogle Scholar
  49. A. Semchenkov et al., GSI Scientific Report 2004, GSI Report 2005-1, p. 332 Google Scholar
  50. K. Subotic et al., Nucl. Instr. Meth. A 481, 71 (2002) CrossRefGoogle Scholar
  51. A. Semchenkov et al., GSI Scientific Report 2005, GSI report 2006-1, p. 264. Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Gesellschaft für Schwerionenforschung mbH, Planckstr. 1DarmstadtGermany

Personalised recommendations