Advertisement

The European Physical Journal D

, Volume 42, Issue 2, pp 325–332 | Cite as

Absorption spectrum of a resonantly driven degenerate V-type atom with a dc-field coupling between excited states

  • K. JinEmail author
  • Z. C. Wang
  • Q. Zhang
Quantum Optics and Quantum Information

Abstract.

We study the absorption spectra of a degenerate V-type atom, where a resonant driving field and a probe field drive different branches of transitions and a dc field is applied to drive the transition between two excited states. The effects of vacuum induced coherence (VIC) on the absorption spectra are investigated. It is demonstrated that in some special cases the VIC can lead to the depression of absorption and narrow resonance. The origin of these features are discussed. When the pump field and the dc field have the same intensity, it is interesting to find that the whole absorption spectrum comes mainly from the absorptions induced by the interferences among different transitions between dressed states.

PACS.

42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light; electromagnetically induced transparency and absorption 42.50.Hz Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.R. Mollow, Phys. Rev. A 188, 1969 (1969) CrossRefADSGoogle Scholar
  2. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions (Wiley, New York, 1992) Google Scholar
  3. B.R. Mollow, Phys. Rev. A 5, 2217 (1972) CrossRefADSGoogle Scholar
  4. G.S. Agarwal, Phys. Rev. A 19, 923 (1979) CrossRefADSGoogle Scholar
  5. P.B. Hogan, S.J. Smith, A.T. Georges, P. Lambropoulos, Phys. Rev. Lett. 41, 229 (1978) CrossRefADSGoogle Scholar
  6. C.J. Wei, N.B. Manson, J.P.D. Martin, Phys. Rev. A 51, 1438 (1995) CrossRefADSGoogle Scholar
  7. F.L. Li, S.Y. Zhu, Phys. Rev. A 59, 2330 (1999) CrossRefADSGoogle Scholar
  8. E. Paspalakis, N.J. Kyltra, P.L. Knight, Phys. Rev. Lett. 82, 2079 (1999) CrossRefADSGoogle Scholar
  9. P.R. Berman, Phys. Rev. A 72, 035801 (2005) CrossRefADSGoogle Scholar
  10. P. Zhou, S. Swain, Phys. Rev. Lett. 78, 832 (1997) CrossRefADSGoogle Scholar
  11. P. Dong, S.H. Tang, Phys. Rev. A 65, 033816 (2002) CrossRefADSGoogle Scholar
  12. S. Menon, G.S. Agarwal, Phys. Rev. A 61, 013807 (1999) CrossRefADSGoogle Scholar
  13. Z. Ficek, S. Swain, Phys. Rev. A 69, 023401 (2004) CrossRefADSGoogle Scholar
  14. T. Quang, H. Freedhoff, Phys. Rev. A 48, 3216 (1993) CrossRefADSGoogle Scholar
  15. F. Carreño, O.G. Calderón, M.A. Antón, I. Gonzalo, Phys. Rev. A 71, 063805 (2005) CrossRefADSGoogle Scholar
  16. N. Lu, P.R. Berman, Phys. Rev. A 36, 3845 (1987) CrossRefADSGoogle Scholar
  17. T.H. Yoon, C.Y. Park, S.J. Park, Phys. Rev. A 70, 061803R (2004) CrossRefADSGoogle Scholar
  18. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Non–relativistic Theory) (Butterworth-Heinemann, Oxford, 1999) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Theoretical Physics, Lanzhou UniversityLanzhouP.R. China

Personalised recommendations