Advertisement

The European Physical Journal D

, Volume 42, Issue 2, pp 243–251 | Cite as

Formation of silver nanoclusters in transparent polyimides by Ag-K ion-exchange process

  • S. CarturanEmail author
  • A. Quaranta
  • M. Bonafini
  • A. Vomiero
  • G. Maggioni
  • G. Mattei
  • C. de Julián Fernández
  • M. Bersani
  • P. Mazzoldi
  • G. Della Mea
Clusters and Nanostructures

Abstract.

Silver nanoclusters embedded in two transparent fluorinated polyimides, 4,4'-hexafluoroisopropylidene diphthalic anhydride – 2,3,5,6-tetramethyl paraphenylene diamine (6FDA-DAD) and 3,3',4,4' – biphenyltetracarboxylic acid dianhydride – 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane (BPDA-3F), have been produced by surface modification with KOH aqueous solution followed by K-assisted Ag doping and thermal reduction in hydrogen atmosphere. The reaction rate of the nucleophilic hydrolysis in KOH, studied by Fourier transform infrared spectroscopy (FT-IR) and Rutherford backscattering spectrometry (RBS), depends on the polyimide chemical structure. After ion-exchange in AgNO3 solution and subsequent annealing, the polyimide structure recovery was monitored by FT-IR whereas the characteristic surface plasmon absorption band of silver nanoparticles was evidenced by optical absorption measurements. The structure of silver nanoclusters as related to size and size distribution in the different polyimide matrices was thoroughly investigated by Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The collected data evidenced a uniform distribution of Ag clusters of nanometric size after thermal treatment at 300 C in both polyimides. For the same ion-exchange treatment parameters and annealing temperature, XRD analyses evidenced the presence of crystallites with similar sizes.

PACS.

71.20.Rv Polymers and organic compounds 82.30.Nr Association, addition, insertion, cluster formation 36.40.Vz Optical properties of clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Gonella, P. Mazzoldi, in Handbook of Nanostructured Materials and Nanotechnology, edited by H. Nalwa (Academic, San Diego, 2000), Vol. 4, Chap. 2 Google Scholar
  2. A.N. Shipway, Chem. Phys. Chem. 1, 18 (2000) Google Scholar
  3. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995) Google Scholar
  4. P. Mulvaney, Langmuir 12, 788 (1996) CrossRefGoogle Scholar
  5. G. Chumanov, K. Sokolov, B.W. Gregory, T.M. Cotton, J. Phys. Chem. 99, 9466 (1995) CrossRefGoogle Scholar
  6. J. Matsui, K. Akamatsu, S. Nishiguchi, D. Miyoshi, H. Nawafune, K. Tamaki, N. Sugimoto, Anal. Chem. 76, 1310 (2004) CrossRefGoogle Scholar
  7. C. de Julián Fernández, M.G. Manera, J. Spadavecchia, G. Maggioni, A. Quaranta, G. Mattei, M. Bazzan, E. Cattaruzza, M. Bonafini, E. Negro, A. Vomiero, S. Carturan, C. Scian, G. Della Mea, R. Rella, L. Vasanelli, P. Mazzoldi, Sens. Actuators B 111-112, 225 (2005) Google Scholar
  8. Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith, J. Mater. Sci. 34, 3859 (1999) CrossRefGoogle Scholar
  9. H. Biederman, Vacuum 37, 367 (1987) CrossRefGoogle Scholar
  10. K. Akamatsu, T. Kawamura, H. Nabika, S. Deki, T. Strunskus, F. Faupel, J. Mater. Chem. 12, 3610 (2002) CrossRefGoogle Scholar
  11. R.J. Angelo, U.S. Patent 3,073,785 (1959) Google Scholar
  12. M.W. Wllison, L.T. Taylor, Chem. Mater. 6, 990 (1994) CrossRefGoogle Scholar
  13. R.E. Southward, D.W. Thompson, Chem. Mater. 16, 1277 (2004) CrossRefGoogle Scholar
  14. S. Yoda, A. Hasegawa, H. Suda, Y. Uchimaru, K. Haraya, T. Tsuji, K. Otake, Chem. Mater. 16, 2363 (2004) CrossRefGoogle Scholar
  15. A.L. Stepanov, Tech. Phys. 49, 143 (2004) CrossRefGoogle Scholar
  16. G. Maggioni, A. Vomiero, S. Carturan, C. Scian, G. Mattei, M. Bazzan, C. de Juliàn Fernandez, P. Mazzoldi, A. Quaranta, G. Della Mea, Appl. Phys. Lett. 85, 5712 (2004) CrossRefADSGoogle Scholar
  17. K. Akamatsu, S. Ikeda, H. Nawafune, S. Deki, Chem. Mater. 15, 2488 (2003) CrossRefGoogle Scholar
  18. K. Akamatsu, Eur. Phys. J. D 24, 377 (2003) CrossRefADSGoogle Scholar
  19. S. Ikeda, K. Akamatsu, H. Nawafune, T. Nishino, S. Deki, J. Phys. Chem. B 108, 15599 (2004) CrossRefGoogle Scholar
  20. Y. Li, Q. Lu, X. Qian, Z. Zhu, J. Yin, Appl. Surf. Sci. 233, 299 (2004) CrossRefADSGoogle Scholar
  21. S. Sasaki, S. Nishi, in Polyimides: fundamentals and applications, edited by Ghosh, Mittal (Marcel Dekker Inc., New York, 1996), p. 71 Google Scholar
  22. W.B. Alston, R.F. Gratz, US Patent 4,885,116 (1989) Google Scholar
  23. L.R. Doolittle, Nucl. Instrum. Meth. B 9, 334 (1985) CrossRefADSGoogle Scholar
  24. R.M. Silverstein, G.C. Bassler, T.C. Morrill, in Spectrometric Indentification of Organic Compounds (J. Wiley & Sons, New York, 1981), p. 116 Google Scholar
  25. A.Y. Alentiev, K.A. Loza, Y.P. Yampolskii, J. Membr. Sci. 167, 91 (2000) CrossRefGoogle Scholar
  26. T.H. Kim, W.J. Koros, G.R. Husk, K.C. O'Brien, J. Membr. Sci. 37, 45 (1988) CrossRefGoogle Scholar
  27. G.W. Arnold, J. Appl. Phys. 46, 4466 (1975) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • S. Carturan
    • 1
    Email author
  • A. Quaranta
    • 2
  • M. Bonafini
    • 3
  • A. Vomiero
    • 3
  • G. Maggioni
    • 1
  • G. Mattei
    • 4
  • C. de Julián Fernández
    • 4
  • M. Bersani
    • 4
  • P. Mazzoldi
    • 4
  • G. Della Mea
    • 2
  1. 1.Laboratori Nazionali di Legnaro, Viale dell'Università 2University of Padova, c/o Istituto Nazionale di Fisica NuclearePadovaItaly
  2. 2.Department of Materials Engineering and Industrial TechnologiesUniversity of TrentoTrentoItaly
  3. 3.Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di LegnaroViale dell'Università 2PadovaItaly
  4. 4.Department of PhysicsUniversity of PadovaPadovaItaly

Personalised recommendations