Advertisement

The European Physical Journal D

, Volume 42, Issue 2, pp 349–357 | Cite as

Zonal model of nonstationary self-focusing of femtosecond laser radiation in air: effective beam characteristics evolution

  • A. A. Zemlyanov
  • Y. E. GeintsEmail author
Ultraintense and Ultrashort Laser Fields

Abstract.

The generic scenario of intense femtosecond laser pulse propagation in the air from the viewpoint of evolution of its integral effective parameters (energy transfer coefficient, effective radius, effective duration, limiting angular divergence) is considered. The analysis of variation of the effective parameters along the propagation path in the single and multiply filamentation scenarios based on numerical calculations is presented. It is shown that the process of self-action of the ultrashort radiation is characterized by the formation in a medium of the nonlinearity layer, after which optical pulse propagates quasi-linearly with the limiting angular divergence that depends mainly on initial pulse power. The effective pulse temporal duration and the effective beam radius increase after the passage through the nonlinearity layer, and their values are mostly determined by the initial beam power also. The coefficient of energy transmission of femtosecond laser radiation is lower than in the linear medium and has a tendency to decrease with the increase of the pulse power.

PACS.

42.25.Bs Wave propagation, transmission and absorption 42.68.Ay Propagation, transmission, attenuation, and radiative transfer 42.65.Jx Beam trapping, self-focusing and defocusing; self-phase modulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. La Fontaine, F. Vidal, Z. Jiang, C.Y. Chien, D. Comtois, A. Desparois, T.W. Johnston, J.-C. Kieffer, H. Pepin, H.P. Mercure, Phys. Plasmas 6, 1615 (1999) CrossRefADSGoogle Scholar
  2. J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, J.-B. Andre, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Wöste, Opt. Lett. 25, 1397 (2000) ADSGoogle Scholar
  3. N. Aközbek, M. Scalora, C.M. Bowden, S.L. Chin, Opt. Commun. 191, 353 (2001) CrossRefADSGoogle Scholar
  4. A. Couairon, S. Tzortzakis, L. Berge, M. Franko, B. Prade, A. Mysyrowicz, J. Opt. Soc. Am. B 19, 1117 (2002) ADSGoogle Scholar
  5. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, Appl. Phys. B 78, 535 (2004) CrossRefADSGoogle Scholar
  6. V.P. Kandidov, I.S. Golubtsov, O.G. Kosareva, Quantum Electron. 34, 348 (2004) CrossRefGoogle Scholar
  7. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A.P. Hatzes, R. Sauerbrey, L. Wöste, J.-P. Wolf, Phys. Rev. E 69, 036607 (2004) CrossRefADSGoogle Scholar
  8. R. Nuter, L. Bergé, J. Opt. Soc. Am. B 23, 874 (2006) CrossRefGoogle Scholar
  9. V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, W. Liu, A. Becker, N. Aközbek, C.M. Bowden, S.L. Chin, Appl. Phys. B 77, 149 (2003) CrossRefADSGoogle Scholar
  10. P. Sprangle, J.R. Penano, B. Hafizi, Phys. Rev. E 66, 046418 (2002) CrossRefADSGoogle Scholar
  11. S.N. Vlasov, V.A. Petrishchev, V.I. Talanov, Radiophys. Quant. Electron. 14, 1353 (1971) Google Scholar
  12. V.E. Zuev, A.A. Zemlyanov, Yu.D. Kopytin, A.V. Kuzikovskii, High-power laser radiation in atmospheric aerosols (Dordrecht, Holland, D. Reidel Publ. Corp., 1984) Google Scholar
  13. A.A. Zemlyanov, Yu.E. Geints, Atmos. Oceanic Opt. 18, 574 (2005) Google Scholar
  14. M. Mlejnek, M. Kolesik, J.V. Moloney, E.M. Wright, Phys. Rev. Lett. 83, 2938 (1999) CrossRefADSGoogle Scholar
  15. E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972) CrossRefADSGoogle Scholar
  16. A. Talebpour, S. Petit, S.L. Chin, Opt. Commun. 171, 285 (1999) CrossRefADSGoogle Scholar
  17. A. Couairon, Eur. Phys. J. D 27, 159 (2003) CrossRefADSGoogle Scholar
  18. O.G. Kosareva, N.A. Panov, N. Akozbek, V.P. Kandidov, Q. Luo, S.A. Hosseini, W. Liu, J.-F. Gravel, G. Roy, S.L. Chin, Appl. Phys. B 82, 111 (2006) CrossRefADSGoogle Scholar
  19. A.E. Siegman, Lasers (Oxford University Press, Mill Valley, CA, 1986) Google Scholar
  20. F. Gori, G. Guattari, C. Padovani, Opt. Commun. 64, 491 (1987) CrossRefADSGoogle Scholar
  21. W. Liu, S.A. Hosseini, Q. Luo, B. Ferland, S.L. Chin, O.G. Kosareva, N.A. Panov, V.P. Kandidov, New J. Phys. 6, 1 (2003) Google Scholar
  22. G. Méchain, A. Couairon, Y.-B. Andre, C. D'Amico, M. Franko, B. Prade, S. Tzortzakis, A. Mysyrowicz, A. Sauerbrey, Appl. Phys. B 79, 379 (2004) CrossRefGoogle Scholar
  23. G. Méchain, A. Couairon, M. Franko, B. Prade, A. Mysyrowicz, Phys. Rev. Lett. 93, 035003 (2004) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, Academicheskii ave. 1TomskRussia

Personalised recommendations